Properties

Label 2-43706-1.1-c1-0-15
Degree $2$
Conductor $43706$
Sign $1$
Analytic cond. $348.994$
Root an. cond. $18.6813$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 4·5-s + 6-s − 4·7-s − 8-s − 2·9-s + 4·10-s − 6·11-s − 12-s + 13-s + 4·14-s + 4·15-s + 16-s − 3·17-s + 2·18-s + 2·19-s − 4·20-s + 4·21-s + 6·22-s + 3·23-s + 24-s + 11·25-s − 26-s + 5·27-s − 4·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 1.78·5-s + 0.408·6-s − 1.51·7-s − 0.353·8-s − 2/3·9-s + 1.26·10-s − 1.80·11-s − 0.288·12-s + 0.277·13-s + 1.06·14-s + 1.03·15-s + 1/4·16-s − 0.727·17-s + 0.471·18-s + 0.458·19-s − 0.894·20-s + 0.872·21-s + 1.27·22-s + 0.625·23-s + 0.204·24-s + 11/5·25-s − 0.196·26-s + 0.962·27-s − 0.755·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43706\)    =    \(2 \cdot 13 \cdot 41^{2}\)
Sign: $1$
Analytic conductor: \(348.994\)
Root analytic conductor: \(18.6813\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 43706,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
13 \( 1 - T \)
41 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.40160515973158, −15.11706515462648, −14.26696175366458, −13.36246390310274, −12.94693028761415, −12.62047575157993, −11.92232617849996, −11.49857714246804, −11.02121548179073, −10.52331154426319, −10.23342777522262, −9.208046685619589, −8.898495114118938, −8.348545254263628, −7.640182419110242, −7.288528877776439, −6.859730180414440, −6.041675026004733, −5.517544737847075, −4.932544101181687, −4.028327651126600, −3.402888240712043, −2.951347450038229, −2.330963451275381, −0.8401139432202426, 0, 0, 0.8401139432202426, 2.330963451275381, 2.951347450038229, 3.402888240712043, 4.028327651126600, 4.932544101181687, 5.517544737847075, 6.041675026004733, 6.859730180414440, 7.288528877776439, 7.640182419110242, 8.348545254263628, 8.898495114118938, 9.208046685619589, 10.23342777522262, 10.52331154426319, 11.02121548179073, 11.49857714246804, 11.92232617849996, 12.62047575157993, 12.94693028761415, 13.36246390310274, 14.26696175366458, 15.11706515462648, 15.40160515973158

Graph of the $Z$-function along the critical line