Properties

Label 2-43706-1.1-c1-0-12
Degree $2$
Conductor $43706$
Sign $1$
Analytic cond. $348.994$
Root an. cond. $18.6813$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 3·5-s + 6-s − 7-s + 8-s − 2·9-s + 3·10-s + 12-s + 13-s − 14-s + 3·15-s + 16-s − 3·17-s − 2·18-s + 2·19-s + 3·20-s − 21-s + 6·23-s + 24-s + 4·25-s + 26-s − 5·27-s − 28-s − 6·29-s + 3·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.34·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s − 2/3·9-s + 0.948·10-s + 0.288·12-s + 0.277·13-s − 0.267·14-s + 0.774·15-s + 1/4·16-s − 0.727·17-s − 0.471·18-s + 0.458·19-s + 0.670·20-s − 0.218·21-s + 1.25·23-s + 0.204·24-s + 4/5·25-s + 0.196·26-s − 0.962·27-s − 0.188·28-s − 1.11·29-s + 0.547·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43706\)    =    \(2 \cdot 13 \cdot 41^{2}\)
Sign: $1$
Analytic conductor: \(348.994\)
Root analytic conductor: \(18.6813\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 43706,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.236078616\)
\(L(\frac12)\) \(\approx\) \(6.236078616\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
13 \( 1 - T \)
41 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.58773217464922, −14.07702242278609, −13.59170606567655, −13.24787142054943, −12.96756924944614, −12.22739166918333, −11.48333152996086, −11.17423737569557, −10.48491231808636, −9.948526528308783, −9.347184982315644, −8.968937875298708, −8.476857066596813, −7.628964961394736, −7.079623711006307, −6.470324967012246, −5.861283828523974, −5.579833047101127, −4.900249635308443, −4.140051180873458, −3.440581890550940, −2.774201236769465, −2.398820467943402, −1.692519858864826, −0.7513332372587130, 0.7513332372587130, 1.692519858864826, 2.398820467943402, 2.774201236769465, 3.440581890550940, 4.140051180873458, 4.900249635308443, 5.579833047101127, 5.861283828523974, 6.470324967012246, 7.079623711006307, 7.628964961394736, 8.476857066596813, 8.968937875298708, 9.347184982315644, 9.948526528308783, 10.48491231808636, 11.17423737569557, 11.48333152996086, 12.22739166918333, 12.96756924944614, 13.24787142054943, 13.59170606567655, 14.07702242278609, 14.58773217464922

Graph of the $Z$-function along the critical line