Properties

Label 43706.v
Number of curves $2$
Conductor $43706$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 43706.v have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(13\)\(1 - T\)
\(41\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 43706.v do not have complex multiplication.

Modular form 43706.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + 3 q^{5} + q^{6} - q^{7} + q^{8} - 2 q^{9} + 3 q^{10} + q^{12} + q^{13} - q^{14} + 3 q^{15} + q^{16} - 3 q^{17} - 2 q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 43706.v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
43706.v1 43706y2 \([1, 0, 0, -679159, -215674589]\) \(-4338776497/4394\) \(-35085761456757674\) \([]\) \(547596\) \(2.0936\)  
43706.v2 43706y1 \([1, 0, 0, 10051, -1330279]\) \(14063/104\) \(-830432223828584\) \([3]\) \(182532\) \(1.5443\) \(\Gamma_0(N)\)-optimal