Properties

Label 2-41280-1.1-c1-0-43
Degree $2$
Conductor $41280$
Sign $-1$
Analytic cond. $329.622$
Root an. cond. $18.1555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·7-s + 9-s − 2·13-s − 15-s + 2·17-s − 8·19-s − 2·21-s + 6·23-s + 25-s + 27-s + 2·29-s + 2·35-s − 4·37-s − 2·39-s − 2·41-s + 43-s − 45-s + 6·47-s − 3·49-s + 2·51-s + 4·53-s − 8·57-s + 8·61-s − 2·63-s + 2·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s − 0.554·13-s − 0.258·15-s + 0.485·17-s − 1.83·19-s − 0.436·21-s + 1.25·23-s + 1/5·25-s + 0.192·27-s + 0.371·29-s + 0.338·35-s − 0.657·37-s − 0.320·39-s − 0.312·41-s + 0.152·43-s − 0.149·45-s + 0.875·47-s − 3/7·49-s + 0.280·51-s + 0.549·53-s − 1.05·57-s + 1.02·61-s − 0.251·63-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41280\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 43\)
Sign: $-1$
Analytic conductor: \(329.622\)
Root analytic conductor: \(18.1555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 41280,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
43 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 2 T + p T^{2} \) 1.41.c
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.01117319101542, −14.58284847350165, −14.05662894811048, −13.28091058996772, −13.02836222670681, −12.42311963950506, −12.09619677342334, −11.34824969844120, −10.63058163798631, −10.38511330236284, −9.675331135338826, −9.153090478474010, −8.611254509047067, −8.211326755534911, −7.452043307643222, −6.971685425697625, −6.520047168210940, −5.814565415576473, −5.020162461759440, −4.463213608176507, −3.803471623060922, −3.231353681396734, −2.610954448561291, −1.962420528843458, −0.9156066593716986, 0, 0.9156066593716986, 1.962420528843458, 2.610954448561291, 3.231353681396734, 3.803471623060922, 4.463213608176507, 5.020162461759440, 5.814565415576473, 6.520047168210940, 6.971685425697625, 7.452043307643222, 8.211326755534911, 8.611254509047067, 9.153090478474010, 9.675331135338826, 10.38511330236284, 10.63058163798631, 11.34824969844120, 12.09619677342334, 12.42311963950506, 13.02836222670681, 13.28091058996772, 14.05662894811048, 14.58284847350165, 15.01117319101542

Graph of the $Z$-function along the critical line