Properties

Label 2-41280-1.1-c1-0-40
Degree $2$
Conductor $41280$
Sign $1$
Analytic cond. $329.622$
Root an. cond. $18.1555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 4·7-s + 9-s + 4·11-s + 2·13-s + 15-s + 6·17-s − 8·19-s + 4·21-s + 25-s + 27-s − 2·29-s + 8·31-s + 4·33-s + 4·35-s + 2·37-s + 2·39-s + 2·41-s − 43-s + 45-s − 8·47-s + 9·49-s + 6·51-s − 6·53-s + 4·55-s − 8·57-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s + 1.20·11-s + 0.554·13-s + 0.258·15-s + 1.45·17-s − 1.83·19-s + 0.872·21-s + 1/5·25-s + 0.192·27-s − 0.371·29-s + 1.43·31-s + 0.696·33-s + 0.676·35-s + 0.328·37-s + 0.320·39-s + 0.312·41-s − 0.152·43-s + 0.149·45-s − 1.16·47-s + 9/7·49-s + 0.840·51-s − 0.824·53-s + 0.539·55-s − 1.05·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41280\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 43\)
Sign: $1$
Analytic conductor: \(329.622\)
Root analytic conductor: \(18.1555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 41280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.518705958\)
\(L(\frac12)\) \(\approx\) \(5.518705958\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
43 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.64182346648465, −14.29207651941656, −13.96110011288604, −13.22370398522865, −12.76571551701934, −12.05894238522926, −11.67726218123529, −11.04500422472872, −10.62889608371552, −9.888387924799280, −9.542910265266206, −8.592205112401612, −8.541333276054192, −7.944861430008348, −7.354012824925349, −6.520783798031062, −6.178539767055708, −5.432655208868023, −4.688870808034163, −4.264861140490469, −3.627802032258308, −2.848693651165031, −1.972773852349072, −1.544940106253870, −0.8899050530534210, 0.8899050530534210, 1.544940106253870, 1.972773852349072, 2.848693651165031, 3.627802032258308, 4.264861140490469, 4.688870808034163, 5.432655208868023, 6.178539767055708, 6.520783798031062, 7.354012824925349, 7.944861430008348, 8.541333276054192, 8.592205112401612, 9.542910265266206, 9.888387924799280, 10.62889608371552, 11.04500422472872, 11.67726218123529, 12.05894238522926, 12.76571551701934, 13.22370398522865, 13.96110011288604, 14.29207651941656, 14.64182346648465

Graph of the $Z$-function along the critical line