Properties

Label 2-41280-1.1-c1-0-13
Degree $2$
Conductor $41280$
Sign $1$
Analytic cond. $329.622$
Root an. cond. $18.1555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 2·7-s + 9-s + 2·11-s + 2·13-s + 15-s − 4·17-s + 6·19-s + 2·21-s + 6·23-s + 25-s − 27-s + 10·29-s − 8·31-s − 2·33-s + 2·35-s − 2·37-s − 2·39-s + 2·41-s + 43-s − 45-s − 2·47-s − 3·49-s + 4·51-s − 10·53-s − 2·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s + 0.603·11-s + 0.554·13-s + 0.258·15-s − 0.970·17-s + 1.37·19-s + 0.436·21-s + 1.25·23-s + 1/5·25-s − 0.192·27-s + 1.85·29-s − 1.43·31-s − 0.348·33-s + 0.338·35-s − 0.328·37-s − 0.320·39-s + 0.312·41-s + 0.152·43-s − 0.149·45-s − 0.291·47-s − 3/7·49-s + 0.560·51-s − 1.37·53-s − 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41280\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 43\)
Sign: $1$
Analytic conductor: \(329.622\)
Root analytic conductor: \(18.1555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 41280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.723692521\)
\(L(\frac12)\) \(\approx\) \(1.723692521\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
43 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.76600491081445, −14.15920744902071, −13.74040797401908, −13.02307583291983, −12.68586386352566, −12.18350392548023, −11.51565085031852, −11.13582986300305, −10.76557886924323, −9.978574736967670, −9.393253540103094, −9.108528819830355, −8.338249893096395, −7.791690670415072, −6.945323451060227, −6.676858764364722, −6.273350668883628, −5.257219696134904, −5.041547335745796, −4.164203432066624, −3.539777221299978, −3.098570335000673, −2.152547463041065, −1.141615309307555, −0.5774708248849159, 0.5774708248849159, 1.141615309307555, 2.152547463041065, 3.098570335000673, 3.539777221299978, 4.164203432066624, 5.041547335745796, 5.257219696134904, 6.273350668883628, 6.676858764364722, 6.945323451060227, 7.791690670415072, 8.338249893096395, 9.108528819830355, 9.393253540103094, 9.978574736967670, 10.76557886924323, 11.13582986300305, 11.51565085031852, 12.18350392548023, 12.68586386352566, 13.02307583291983, 13.74040797401908, 14.15920744902071, 14.76600491081445

Graph of the $Z$-function along the critical line