Properties

Label 2-40656-1.1-c1-0-47
Degree $2$
Conductor $40656$
Sign $1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 7-s + 9-s − 6·13-s + 2·15-s + 2·17-s + 4·19-s + 21-s + 4·23-s − 25-s + 27-s + 10·29-s + 8·31-s + 2·35-s + 6·37-s − 6·39-s + 2·41-s − 4·43-s + 2·45-s − 8·47-s + 49-s + 2·51-s − 10·53-s + 4·57-s − 12·59-s + 2·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 0.377·7-s + 1/3·9-s − 1.66·13-s + 0.516·15-s + 0.485·17-s + 0.917·19-s + 0.218·21-s + 0.834·23-s − 1/5·25-s + 0.192·27-s + 1.85·29-s + 1.43·31-s + 0.338·35-s + 0.986·37-s − 0.960·39-s + 0.312·41-s − 0.609·43-s + 0.298·45-s − 1.16·47-s + 1/7·49-s + 0.280·51-s − 1.37·53-s + 0.529·57-s − 1.56·59-s + 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.199768350\)
\(L(\frac12)\) \(\approx\) \(4.199768350\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.60740537471766, −14.18049262127969, −13.87656581222109, −13.37650111912451, −12.63344072270967, −12.28395031376024, −11.70652356308835, −11.13795975958126, −10.27198513329121, −9.943879961710631, −9.600453038219327, −9.058433896717611, −8.309000966121367, −7.755491272053973, −7.448982322757099, −6.489230623966439, −6.285625967687569, −5.234976986397924, −4.877509160710115, −4.457838508231109, −3.269988741269308, −2.863582041465946, −2.270416269957777, −1.493275155867897, −0.7406324998616873, 0.7406324998616873, 1.493275155867897, 2.270416269957777, 2.863582041465946, 3.269988741269308, 4.457838508231109, 4.877509160710115, 5.234976986397924, 6.285625967687569, 6.489230623966439, 7.448982322757099, 7.755491272053973, 8.309000966121367, 9.058433896717611, 9.600453038219327, 9.943879961710631, 10.27198513329121, 11.13795975958126, 11.70652356308835, 12.28395031376024, 12.63344072270967, 13.37650111912451, 13.87656581222109, 14.18049262127969, 14.60740537471766

Graph of the $Z$-function along the critical line