Properties

Label 2-4050-1.1-c1-0-19
Degree $2$
Conductor $4050$
Sign $1$
Analytic cond. $32.3394$
Root an. cond. $5.68677$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 7-s − 8-s + 6·11-s + 2·13-s + 14-s + 16-s + 3·17-s + 2·19-s − 6·22-s − 2·26-s − 28-s + 8·31-s − 32-s − 3·34-s + 2·37-s − 2·38-s + 3·41-s − 10·43-s + 6·44-s − 3·47-s − 6·49-s + 2·52-s + 12·53-s + 56-s + 6·59-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s + 1.80·11-s + 0.554·13-s + 0.267·14-s + 1/4·16-s + 0.727·17-s + 0.458·19-s − 1.27·22-s − 0.392·26-s − 0.188·28-s + 1.43·31-s − 0.176·32-s − 0.514·34-s + 0.328·37-s − 0.324·38-s + 0.468·41-s − 1.52·43-s + 0.904·44-s − 0.437·47-s − 6/7·49-s + 0.277·52-s + 1.64·53-s + 0.133·56-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4050\)    =    \(2 \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(32.3394\)
Root analytic conductor: \(5.68677\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4050,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.620218866\)
\(L(\frac12)\) \(\approx\) \(1.620218866\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.601201076046940639008237162144, −7.78315526519007186922879068219, −6.93985540300127352858512533236, −6.38682625303600140272956298815, −5.75961091111416722490850100823, −4.57885690423164351304582145717, −3.67879513671357649758276667256, −2.98415531300001126600818812846, −1.65052109241719998693478498231, −0.877622893069039740457627492700, 0.877622893069039740457627492700, 1.65052109241719998693478498231, 2.98415531300001126600818812846, 3.67879513671357649758276667256, 4.57885690423164351304582145717, 5.75961091111416722490850100823, 6.38682625303600140272956298815, 6.93985540300127352858512533236, 7.78315526519007186922879068219, 8.601201076046940639008237162144

Graph of the $Z$-function along the critical line