Properties

Label 2-390-1.1-c1-0-3
Degree $2$
Conductor $390$
Sign $1$
Analytic cond. $3.11416$
Root an. cond. $1.76469$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s + 2·7-s − 8-s + 9-s − 10-s + 12-s + 13-s − 2·14-s + 15-s + 16-s − 18-s + 2·19-s + 20-s + 2·21-s − 6·23-s − 24-s + 25-s − 26-s + 27-s + 2·28-s − 30-s + 8·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.288·12-s + 0.277·13-s − 0.534·14-s + 0.258·15-s + 1/4·16-s − 0.235·18-s + 0.458·19-s + 0.223·20-s + 0.436·21-s − 1.25·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s + 0.377·28-s − 0.182·30-s + 1.43·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(390\)    =    \(2 \cdot 3 \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(3.11416\)
Root analytic conductor: \(1.76469\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 390,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.405857374\)
\(L(\frac12)\) \(\approx\) \(1.405857374\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
13 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.20291413168661963945398212907, −10.16327219341387316664345665196, −9.534301462999349112263247556576, −8.437246301408132287185658098919, −7.923933777636678991733597967480, −6.77145317316863409022172537659, −5.65253747259908769204779494812, −4.28133784539552676878054432798, −2.75082196840239005573414536478, −1.49299392430960775577654396970, 1.49299392430960775577654396970, 2.75082196840239005573414536478, 4.28133784539552676878054432798, 5.65253747259908769204779494812, 6.77145317316863409022172537659, 7.923933777636678991733597967480, 8.437246301408132287185658098919, 9.534301462999349112263247556576, 10.16327219341387316664345665196, 11.20291413168661963945398212907

Graph of the $Z$-function along the critical line