Properties

Label 2-383792-1.1-c1-0-3
Degree $2$
Conductor $383792$
Sign $-1$
Analytic cond. $3064.59$
Root an. cond. $55.3587$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·7-s − 2·9-s − 3·11-s − 7·13-s − 5·19-s − 4·21-s + 6·23-s − 5·25-s − 5·27-s − 9·29-s − 10·31-s − 3·33-s − 2·37-s − 7·39-s − 11·43-s − 6·47-s + 9·49-s + 6·53-s − 5·57-s + 61-s + 8·63-s + 4·67-s + 6·69-s + 9·71-s − 11·73-s − 5·75-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.51·7-s − 2/3·9-s − 0.904·11-s − 1.94·13-s − 1.14·19-s − 0.872·21-s + 1.25·23-s − 25-s − 0.962·27-s − 1.67·29-s − 1.79·31-s − 0.522·33-s − 0.328·37-s − 1.12·39-s − 1.67·43-s − 0.875·47-s + 9/7·49-s + 0.824·53-s − 0.662·57-s + 0.128·61-s + 1.00·63-s + 0.488·67-s + 0.722·69-s + 1.06·71-s − 1.28·73-s − 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 383792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 383792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(383792\)    =    \(2^{4} \cdot 17^{2} \cdot 83\)
Sign: $-1$
Analytic conductor: \(3064.59\)
Root analytic conductor: \(55.3587\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 383792,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
17 \( 1 \)
83 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 7 T + p T^{2} \) 1.13.h
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.85059852894958, −12.38400103188868, −11.84171069285965, −11.36034652569847, −10.77063091421496, −10.44651697375776, −9.776174159185521, −9.494318842878279, −9.284848710936540, −8.614251206018753, −8.180969099010889, −7.593073114906681, −7.210012449373506, −6.854312478510712, −6.260692690183960, −5.654295799313477, −5.206963044724951, −4.956497005308532, −3.856969499660673, −3.747035625575801, −3.044643318803815, −2.622134667290180, −2.211498331972988, −1.672265697103245, −0.2484943365787438, 0, 0.2484943365787438, 1.672265697103245, 2.211498331972988, 2.622134667290180, 3.044643318803815, 3.747035625575801, 3.856969499660673, 4.956497005308532, 5.206963044724951, 5.654295799313477, 6.260692690183960, 6.854312478510712, 7.210012449373506, 7.593073114906681, 8.180969099010889, 8.614251206018753, 9.284848710936540, 9.494318842878279, 9.776174159185521, 10.44651697375776, 10.77063091421496, 11.36034652569847, 11.84171069285965, 12.38400103188868, 12.85059852894958

Graph of the $Z$-function along the critical line