Properties

Label 2-381150-1.1-c1-0-384
Degree $2$
Conductor $381150$
Sign $-1$
Analytic cond. $3043.49$
Root an. cond. $55.1679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 7-s + 8-s + 2·13-s + 14-s + 16-s − 6·17-s + 4·19-s + 2·26-s + 28-s + 6·29-s − 4·31-s + 32-s − 6·34-s − 2·37-s + 4·38-s + 6·41-s − 4·43-s + 49-s + 2·52-s + 6·53-s + 56-s + 6·58-s − 2·61-s − 4·62-s + 64-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.377·7-s + 0.353·8-s + 0.554·13-s + 0.267·14-s + 1/4·16-s − 1.45·17-s + 0.917·19-s + 0.392·26-s + 0.188·28-s + 1.11·29-s − 0.718·31-s + 0.176·32-s − 1.02·34-s − 0.328·37-s + 0.648·38-s + 0.937·41-s − 0.609·43-s + 1/7·49-s + 0.277·52-s + 0.824·53-s + 0.133·56-s + 0.787·58-s − 0.256·61-s − 0.508·62-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 381150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 381150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(381150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(3043.49\)
Root analytic conductor: \(55.1679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 381150,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
11 \( 1 \)
good13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.84122589030732, −12.28669170709322, −11.72207512741037, −11.39423965229902, −11.08068985509072, −10.54730881700359, −10.10014181885876, −9.594947316619490, −8.897191422750364, −8.689929998903928, −8.153774844942225, −7.522157757516389, −7.149410364631832, −6.672214923537275, −6.169456105360833, −5.727455871673025, −5.147089596163883, −4.763720764476649, −4.204670683301551, −3.812308782243384, −3.177903702890233, −2.636059409835047, −2.131724180085461, −1.470863649652887, −0.9190230535064484, 0, 0.9190230535064484, 1.470863649652887, 2.131724180085461, 2.636059409835047, 3.177903702890233, 3.812308782243384, 4.204670683301551, 4.763720764476649, 5.147089596163883, 5.727455871673025, 6.169456105360833, 6.672214923537275, 7.149410364631832, 7.522157757516389, 8.153774844942225, 8.689929998903928, 8.897191422750364, 9.594947316619490, 10.10014181885876, 10.54730881700359, 11.08068985509072, 11.39423965229902, 11.72207512741037, 12.28669170709322, 12.84122589030732

Graph of the $Z$-function along the critical line