Properties

Label 2-372645-1.1-c1-0-123
Degree $2$
Conductor $372645$
Sign $-1$
Analytic cond. $2975.58$
Root an. cond. $54.5489$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 5-s + 3·8-s − 10-s − 16-s + 8·17-s − 2·19-s − 20-s + 2·23-s + 25-s − 2·29-s + 2·31-s − 5·32-s − 8·34-s − 2·37-s + 2·38-s + 3·40-s − 2·41-s − 6·43-s − 2·46-s + 4·47-s − 50-s + 6·53-s + 2·58-s + 2·59-s − 10·61-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.447·5-s + 1.06·8-s − 0.316·10-s − 1/4·16-s + 1.94·17-s − 0.458·19-s − 0.223·20-s + 0.417·23-s + 1/5·25-s − 0.371·29-s + 0.359·31-s − 0.883·32-s − 1.37·34-s − 0.328·37-s + 0.324·38-s + 0.474·40-s − 0.312·41-s − 0.914·43-s − 0.294·46-s + 0.583·47-s − 0.141·50-s + 0.824·53-s + 0.262·58-s + 0.260·59-s − 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(372645\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2975.58\)
Root analytic conductor: \(54.5489\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 372645,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57804962754064, −12.36519419933969, −11.86870272512808, −11.23400180612181, −10.70574359731705, −10.36216131939935, −9.961408958379050, −9.571510038971301, −9.107514605174731, −8.737301608006042, −8.104157985300406, −7.827700663755983, −7.433322894049581, −6.665243010694654, −6.430107481823921, −5.519929881505498, −5.344286145615830, −4.889272229393878, −4.186795956960898, −3.634473709851728, −3.259774185584910, −2.450816810633794, −1.887425233848608, −1.199188128428162, −0.8403427978491756, 0, 0.8403427978491756, 1.199188128428162, 1.887425233848608, 2.450816810633794, 3.259774185584910, 3.634473709851728, 4.186795956960898, 4.889272229393878, 5.344286145615830, 5.519929881505498, 6.430107481823921, 6.665243010694654, 7.433322894049581, 7.827700663755983, 8.104157985300406, 8.737301608006042, 9.107514605174731, 9.571510038971301, 9.961408958379050, 10.36216131939935, 10.70574359731705, 11.23400180612181, 11.86870272512808, 12.36519419933969, 12.57804962754064

Graph of the $Z$-function along the critical line