Properties

Label 2-360e2-1.1-c1-0-14
Degree $2$
Conductor $129600$
Sign $1$
Analytic cond. $1034.86$
Root an. cond. $32.1692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 3·11-s − 13-s − 6·17-s − 4·19-s − 3·23-s − 3·29-s − 5·31-s + 2·37-s + 3·41-s + 43-s − 9·47-s − 6·49-s − 6·53-s − 3·59-s + 13·61-s + 7·67-s + 12·71-s + 10·73-s − 3·77-s − 11·79-s + 9·83-s + 6·89-s + 91-s − 11·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.377·7-s + 0.904·11-s − 0.277·13-s − 1.45·17-s − 0.917·19-s − 0.625·23-s − 0.557·29-s − 0.898·31-s + 0.328·37-s + 0.468·41-s + 0.152·43-s − 1.31·47-s − 6/7·49-s − 0.824·53-s − 0.390·59-s + 1.66·61-s + 0.855·67-s + 1.42·71-s + 1.17·73-s − 0.341·77-s − 1.23·79-s + 0.987·83-s + 0.635·89-s + 0.104·91-s − 1.11·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(129600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(1034.86\)
Root analytic conductor: \(32.1692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 129600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7053062470\)
\(L(\frac12)\) \(\approx\) \(0.7053062470\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.36406040450713, −13.02392154577639, −12.55733562951851, −12.15287958534314, −11.43567126368158, −11.01766855665153, −10.86648871789711, −9.899104461598598, −9.587906642122022, −9.234595651437390, −8.557305503059541, −8.207074981866293, −7.585618589624252, −6.841410023367574, −6.564797895861940, −6.212861028344573, −5.420870912584741, −4.908417429246209, −4.172522718060516, −3.914664621541222, −3.262677701795629, −2.377725071231478, −2.039088811724947, −1.285233188666022, −0.2493821336166846, 0.2493821336166846, 1.285233188666022, 2.039088811724947, 2.377725071231478, 3.262677701795629, 3.914664621541222, 4.172522718060516, 4.908417429246209, 5.420870912584741, 6.212861028344573, 6.564797895861940, 6.841410023367574, 7.585618589624252, 8.207074981866293, 8.557305503059541, 9.234595651437390, 9.587906642122022, 9.899104461598598, 10.86648871789711, 11.01766855665153, 11.43567126368158, 12.15287958534314, 12.55733562951851, 13.02392154577639, 13.36406040450713

Graph of the $Z$-function along the critical line