Properties

Label 2-35700-1.1-c1-0-20
Degree $2$
Conductor $35700$
Sign $-1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s − 2·11-s − 17-s − 2·19-s − 21-s − 4·23-s − 27-s − 6·29-s − 2·31-s + 2·33-s + 6·37-s − 10·41-s + 4·43-s + 8·47-s + 49-s + 51-s + 4·53-s + 2·57-s + 2·61-s + 63-s + 4·67-s + 4·69-s + 14·71-s − 4·73-s − 2·77-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.603·11-s − 0.242·17-s − 0.458·19-s − 0.218·21-s − 0.834·23-s − 0.192·27-s − 1.11·29-s − 0.359·31-s + 0.348·33-s + 0.986·37-s − 1.56·41-s + 0.609·43-s + 1.16·47-s + 1/7·49-s + 0.140·51-s + 0.549·53-s + 0.264·57-s + 0.256·61-s + 0.125·63-s + 0.488·67-s + 0.481·69-s + 1.66·71-s − 0.468·73-s − 0.227·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.27791867160141, −14.72845431966111, −14.11741505114395, −13.57805898352747, −12.98327173509296, −12.65495450080426, −11.90379808696987, −11.55355951196078, −10.92617618566979, −10.51653268224613, −9.985577408011694, −9.345800616802760, −8.752016214571193, −8.102260273876001, −7.611753759459971, −7.048945166373362, −6.365214515758702, −5.771205251581813, −5.304707381606675, −4.642371400287264, −4.031073074460800, −3.409290028442309, −2.341822720271941, −1.945889758404300, −0.8818644898280137, 0, 0.8818644898280137, 1.945889758404300, 2.341822720271941, 3.409290028442309, 4.031073074460800, 4.642371400287264, 5.304707381606675, 5.771205251581813, 6.365214515758702, 7.048945166373362, 7.611753759459971, 8.102260273876001, 8.752016214571193, 9.345800616802760, 9.985577408011694, 10.51653268224613, 10.92617618566979, 11.55355951196078, 11.90379808696987, 12.65495450080426, 12.98327173509296, 13.57805898352747, 14.11741505114395, 14.72845431966111, 15.27791867160141

Graph of the $Z$-function along the critical line