Properties

Label 2-348726-1.1-c1-0-35
Degree $2$
Conductor $348726$
Sign $-1$
Analytic cond. $2784.59$
Root an. cond. $52.7692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s + 7-s − 8-s + 9-s − 10-s − 2·11-s + 12-s + 13-s − 14-s + 15-s + 16-s − 8·17-s − 18-s + 20-s + 21-s + 2·22-s + 23-s − 24-s − 4·25-s − 26-s + 27-s + 28-s + 3·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.603·11-s + 0.288·12-s + 0.277·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s − 1.94·17-s − 0.235·18-s + 0.223·20-s + 0.218·21-s + 0.426·22-s + 0.208·23-s − 0.204·24-s − 4/5·25-s − 0.196·26-s + 0.192·27-s + 0.188·28-s + 0.557·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 348726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 348726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(348726\)    =    \(2 \cdot 3 \cdot 7 \cdot 19^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(2784.59\)
Root analytic conductor: \(52.7692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 348726,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 - T \)
19 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 8 T + p T^{2} \) 1.17.i
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 11 T + p T^{2} \) 1.41.l
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72954066216235, −12.39732693492015, −11.64209619778366, −11.46468835679546, −10.73799083590209, −10.50154484286182, −10.09795808752366, −9.508606504775998, −9.043765611092346, −8.672468793096202, −8.341547637039260, −7.882138574905175, −7.212931011306682, −6.910443570253875, −6.429707955156870, −5.874105220809344, −5.202140500229304, −4.902406984091214, −4.062990665882983, −3.796227470633628, −2.909980244540255, −2.499853004897369, −1.963612378821214, −1.614332999301317, −0.7278354331538418, 0, 0.7278354331538418, 1.614332999301317, 1.963612378821214, 2.499853004897369, 2.909980244540255, 3.796227470633628, 4.062990665882983, 4.902406984091214, 5.202140500229304, 5.874105220809344, 6.429707955156870, 6.910443570253875, 7.212931011306682, 7.882138574905175, 8.341547637039260, 8.672468793096202, 9.043765611092346, 9.508606504775998, 10.09795808752366, 10.50154484286182, 10.73799083590209, 11.46468835679546, 11.64209619778366, 12.39732693492015, 12.72954066216235

Graph of the $Z$-function along the critical line