Properties

Label 348726.bc
Number of curves $1$
Conductor $348726$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 348726.bc1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(7\)\(1 - T\)
\(19\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 348726.bc do not have complex multiplication.

Modular form 348726.2.a.bc

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} + q^{7} - q^{8} + q^{9} - q^{10} - 2 q^{11} + q^{12} + q^{13} - q^{14} + q^{15} + q^{16} - 8 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 348726.bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
348726.bc1 348726bc1 \([1, 0, 1, -350178, -309804620]\) \(-100940836056481/822747856896\) \(-38706897768534245376\) \([]\) \(10506240\) \(2.4413\) \(\Gamma_0(N)\)-optimal