Properties

Label 2-34848-1.1-c1-0-18
Degree $2$
Conductor $34848$
Sign $1$
Analytic cond. $278.262$
Root an. cond. $16.6812$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 2·13-s + 2·17-s + 2·19-s + 6·23-s − 5·25-s + 2·29-s + 8·31-s − 2·37-s + 6·41-s + 2·43-s + 6·47-s + 9·49-s − 4·53-s + 4·59-s + 10·61-s − 12·67-s + 10·71-s + 12·73-s − 8·79-s + 8·83-s − 2·89-s − 8·91-s − 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 1.51·7-s + 0.554·13-s + 0.485·17-s + 0.458·19-s + 1.25·23-s − 25-s + 0.371·29-s + 1.43·31-s − 0.328·37-s + 0.937·41-s + 0.304·43-s + 0.875·47-s + 9/7·49-s − 0.549·53-s + 0.520·59-s + 1.28·61-s − 1.46·67-s + 1.18·71-s + 1.40·73-s − 0.900·79-s + 0.878·83-s − 0.211·89-s − 0.838·91-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34848 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(34848\)    =    \(2^{5} \cdot 3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(278.262\)
Root analytic conductor: \(16.6812\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 34848,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.978532007\)
\(L(\frac12)\) \(\approx\) \(1.978532007\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.13327119312354, −14.30340162897812, −13.81787019880764, −13.38268572070453, −12.89564187797195, −12.33890190525105, −11.93250875121134, −11.20685814316662, −10.70260404505796, −10.00666925206025, −9.681604666223443, −9.159041839410827, −8.549995330607279, −7.903547809742872, −7.260453712190496, −6.679522964341284, −6.213696559312712, −5.647112546510789, −5.007284069190529, −4.106366375889933, −3.613028227339055, −2.938991780370661, −2.458157909129470, −1.239878447208374, −0.5817296613379226, 0.5817296613379226, 1.239878447208374, 2.458157909129470, 2.938991780370661, 3.613028227339055, 4.106366375889933, 5.007284069190529, 5.647112546510789, 6.213696559312712, 6.679522964341284, 7.260453712190496, 7.903547809742872, 8.549995330607279, 9.159041839410827, 9.681604666223443, 10.00666925206025, 10.70260404505796, 11.20685814316662, 11.93250875121134, 12.33890190525105, 12.89564187797195, 13.38268572070453, 13.81787019880764, 14.30340162897812, 15.13327119312354

Graph of the $Z$-function along the critical line