Properties

Label 2-33600-1.1-c1-0-127
Degree $2$
Conductor $33600$
Sign $1$
Analytic cond. $268.297$
Root an. cond. $16.3797$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s + 4·11-s − 2·13-s + 6·17-s + 4·19-s + 21-s + 8·23-s + 27-s + 2·29-s + 4·33-s − 2·37-s − 2·39-s + 10·41-s − 4·43-s + 49-s + 6·51-s + 14·53-s + 4·57-s + 12·59-s + 2·61-s + 63-s + 4·67-s + 8·69-s − 2·73-s + 4·77-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s + 1.20·11-s − 0.554·13-s + 1.45·17-s + 0.917·19-s + 0.218·21-s + 1.66·23-s + 0.192·27-s + 0.371·29-s + 0.696·33-s − 0.328·37-s − 0.320·39-s + 1.56·41-s − 0.609·43-s + 1/7·49-s + 0.840·51-s + 1.92·53-s + 0.529·57-s + 1.56·59-s + 0.256·61-s + 0.125·63-s + 0.488·67-s + 0.963·69-s − 0.234·73-s + 0.455·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33600\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(268.297\)
Root analytic conductor: \(16.3797\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 33600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.638723591\)
\(L(\frac12)\) \(\approx\) \(4.638723591\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.92666157959846, −14.44412244842656, −14.13656611232191, −13.49301751092356, −12.95425296121785, −12.20957109544366, −11.97231072380504, −11.35884327638103, −10.74399426514283, −10.03741311548107, −9.595208846433967, −9.118974160571965, −8.552675387618798, −7.964652130735078, −7.258994130591628, −7.038753806250300, −6.236713336525412, −5.321783696644939, −5.122969210343696, −4.119514961461019, −3.673414616428152, −2.945543206636164, −2.340145401383753, −1.233537064633089, −0.9537892464135103, 0.9537892464135103, 1.233537064633089, 2.340145401383753, 2.945543206636164, 3.673414616428152, 4.119514961461019, 5.122969210343696, 5.321783696644939, 6.236713336525412, 7.038753806250300, 7.258994130591628, 7.964652130735078, 8.552675387618798, 9.118974160571965, 9.595208846433967, 10.03741311548107, 10.74399426514283, 11.35884327638103, 11.97231072380504, 12.20957109544366, 12.95425296121785, 13.49301751092356, 14.13656611232191, 14.44412244842656, 14.92666157959846

Graph of the $Z$-function along the critical line