| L(s)  = 1 | + 3-s         + 7-s     + 9-s     + 4·11-s     − 2·13-s         + 6·17-s     + 4·19-s     + 21-s     + 8·23-s         + 27-s     + 2·29-s         + 4·33-s         − 2·37-s     − 2·39-s     + 10·41-s     − 4·43-s             + 49-s     + 6·51-s     + 14·53-s         + 4·57-s     + 12·59-s     + 2·61-s     + 63-s         + 4·67-s     + 8·69-s         − 2·73-s         + 4·77-s  + ⋯ | 
| L(s)  = 1 | + 0.577·3-s         + 0.377·7-s     + 1/3·9-s     + 1.20·11-s     − 0.554·13-s         + 1.45·17-s     + 0.917·19-s     + 0.218·21-s     + 1.66·23-s         + 0.192·27-s     + 0.371·29-s         + 0.696·33-s         − 0.328·37-s     − 0.320·39-s     + 1.56·41-s     − 0.609·43-s             + 1/7·49-s     + 0.840·51-s     + 1.92·53-s         + 0.529·57-s     + 1.56·59-s     + 0.256·61-s     + 0.125·63-s         + 0.488·67-s     + 0.963·69-s         − 0.234·73-s         + 0.455·77-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(4.638723591\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(4.638723591\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 - T \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 7 | \( 1 - T \) |  | 
| good | 11 | \( 1 - 4 T + p T^{2} \) | 1.11.ae | 
|  | 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c | 
|  | 17 | \( 1 - 6 T + p T^{2} \) | 1.17.ag | 
|  | 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae | 
|  | 23 | \( 1 - 8 T + p T^{2} \) | 1.23.ai | 
|  | 29 | \( 1 - 2 T + p T^{2} \) | 1.29.ac | 
|  | 31 | \( 1 + p T^{2} \) | 1.31.a | 
|  | 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c | 
|  | 41 | \( 1 - 10 T + p T^{2} \) | 1.41.ak | 
|  | 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e | 
|  | 47 | \( 1 + p T^{2} \) | 1.47.a | 
|  | 53 | \( 1 - 14 T + p T^{2} \) | 1.53.ao | 
|  | 59 | \( 1 - 12 T + p T^{2} \) | 1.59.am | 
|  | 61 | \( 1 - 2 T + p T^{2} \) | 1.61.ac | 
|  | 67 | \( 1 - 4 T + p T^{2} \) | 1.67.ae | 
|  | 71 | \( 1 + p T^{2} \) | 1.71.a | 
|  | 73 | \( 1 + 2 T + p T^{2} \) | 1.73.c | 
|  | 79 | \( 1 - 8 T + p T^{2} \) | 1.79.ai | 
|  | 83 | \( 1 - 4 T + p T^{2} \) | 1.83.ae | 
|  | 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g | 
|  | 97 | \( 1 - 6 T + p T^{2} \) | 1.97.ag | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.92666157959846, −14.44412244842656, −14.13656611232191, −13.49301751092356, −12.95425296121785, −12.20957109544366, −11.97231072380504, −11.35884327638103, −10.74399426514283, −10.03741311548107, −9.595208846433967, −9.118974160571965, −8.552675387618798, −7.964652130735078, −7.258994130591628, −7.038753806250300, −6.236713336525412, −5.321783696644939, −5.122969210343696, −4.119514961461019, −3.673414616428152, −2.945543206636164, −2.340145401383753, −1.233537064633089, −0.9537892464135103, 
0.9537892464135103, 1.233537064633089, 2.340145401383753, 2.945543206636164, 3.673414616428152, 4.119514961461019, 5.122969210343696, 5.321783696644939, 6.236713336525412, 7.038753806250300, 7.258994130591628, 7.964652130735078, 8.552675387618798, 9.118974160571965, 9.595208846433967, 10.03741311548107, 10.74399426514283, 11.35884327638103, 11.97231072380504, 12.20957109544366, 12.95425296121785, 13.49301751092356, 14.13656611232191, 14.44412244842656, 14.92666157959846
