Properties

Label 2-317130-1.1-c1-0-24
Degree $2$
Conductor $317130$
Sign $-1$
Analytic cond. $2532.29$
Root an. cond. $50.3219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 7-s − 8-s + 9-s + 10-s + 11-s − 12-s + 13-s + 14-s + 15-s + 16-s − 18-s − 4·19-s − 20-s + 21-s − 22-s − 9·23-s + 24-s + 25-s − 26-s − 27-s − 28-s + 3·29-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s − 0.288·12-s + 0.277·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.235·18-s − 0.917·19-s − 0.223·20-s + 0.218·21-s − 0.213·22-s − 1.87·23-s + 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.192·27-s − 0.188·28-s + 0.557·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(317130\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(2532.29\)
Root analytic conductor: \(50.3219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 317130,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 - T \)
31 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.65579663707050, −12.42764468927262, −11.77489684086895, −11.43902574157601, −11.18964943810947, −10.38862014470112, −10.16271075492046, −9.856673730280586, −9.191064015151587, −8.623560245739180, −8.354380398524998, −7.799922870289043, −7.378141193887496, −6.696454127657659, −6.344357276376963, −6.123720622172859, −5.383181203498756, −4.786104493647361, −4.298290253848016, −3.609536006658240, −3.390448834567858, −2.425176513030937, −1.958682025037782, −1.347883220271240, −0.5440000949866078, 0, 0.5440000949866078, 1.347883220271240, 1.958682025037782, 2.425176513030937, 3.390448834567858, 3.609536006658240, 4.298290253848016, 4.786104493647361, 5.383181203498756, 6.123720622172859, 6.344357276376963, 6.696454127657659, 7.378141193887496, 7.799922870289043, 8.354380398524998, 8.623560245739180, 9.191064015151587, 9.856673730280586, 10.16271075492046, 10.38862014470112, 11.18964943810947, 11.43902574157601, 11.77489684086895, 12.42764468927262, 12.65579663707050

Graph of the $Z$-function along the critical line