Properties

Label 2-317130-1.1-c1-0-18
Degree $2$
Conductor $317130$
Sign $1$
Analytic cond. $2532.29$
Root an. cond. $50.3219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s + 11-s − 12-s + 2·13-s − 15-s + 16-s − 2·17-s − 18-s + 4·19-s + 20-s − 22-s + 24-s + 25-s − 2·26-s − 27-s + 2·29-s + 30-s − 32-s − 33-s + 2·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s − 0.288·12-s + 0.554·13-s − 0.258·15-s + 1/4·16-s − 0.485·17-s − 0.235·18-s + 0.917·19-s + 0.223·20-s − 0.213·22-s + 0.204·24-s + 1/5·25-s − 0.392·26-s − 0.192·27-s + 0.371·29-s + 0.182·30-s − 0.176·32-s − 0.174·33-s + 0.342·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(317130\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(2532.29\)
Root analytic conductor: \(50.3219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 317130,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.872388325\)
\(L(\frac12)\) \(\approx\) \(1.872388325\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 - T \)
31 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.73439662111227, −11.93967661004091, −11.64507454755118, −11.23818808158273, −10.86285013257490, −10.26737749222817, −9.939947367954292, −9.416049823621325, −9.099846219197633, −8.549219886159912, −7.998305765552108, −7.614664409578998, −6.948641156231087, −6.622341395618616, −6.133152985518407, −5.679852615629450, −5.223066394532983, −4.533575445450018, −4.116642710527132, −3.342036591007479, −2.878712702662908, −2.184040557538639, −1.583879824798884, −1.035880907975690, −0.4832786834389820, 0.4832786834389820, 1.035880907975690, 1.583879824798884, 2.184040557538639, 2.878712702662908, 3.342036591007479, 4.116642710527132, 4.533575445450018, 5.223066394532983, 5.679852615629450, 6.133152985518407, 6.622341395618616, 6.948641156231087, 7.614664409578998, 7.998305765552108, 8.549219886159912, 9.099846219197633, 9.416049823621325, 9.939947367954292, 10.26737749222817, 10.86285013257490, 11.23818808158273, 11.64507454755118, 11.93967661004091, 12.73439662111227

Graph of the $Z$-function along the critical line