Properties

Label 2-309680-1.1-c1-0-27
Degree $2$
Conductor $309680$
Sign $-1$
Analytic cond. $2472.80$
Root an. cond. $49.7273$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 2·9-s − 3·11-s + 2·13-s − 15-s − 3·17-s + 19-s − 6·23-s + 25-s + 5·27-s − 6·29-s − 5·31-s + 3·33-s − 7·37-s − 2·39-s − 6·41-s + 43-s − 2·45-s − 3·47-s + 3·51-s − 9·53-s − 3·55-s − 57-s − 6·59-s + 8·61-s + 2·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 2/3·9-s − 0.904·11-s + 0.554·13-s − 0.258·15-s − 0.727·17-s + 0.229·19-s − 1.25·23-s + 1/5·25-s + 0.962·27-s − 1.11·29-s − 0.898·31-s + 0.522·33-s − 1.15·37-s − 0.320·39-s − 0.937·41-s + 0.152·43-s − 0.298·45-s − 0.437·47-s + 0.420·51-s − 1.23·53-s − 0.404·55-s − 0.132·57-s − 0.781·59-s + 1.02·61-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309680\)    =    \(2^{4} \cdot 5 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(2472.80\)
Root analytic conductor: \(49.7273\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 309680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 4 T + p T^{2} \) 1.73.e
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92074758562006, −12.34154896661766, −12.04313332073197, −11.29763377774385, −11.18350247914015, −10.61126691503962, −10.33068329136007, −9.608791370913008, −9.364241724272978, −8.590597492823951, −8.404201403655141, −7.831386213519442, −7.255408200559774, −6.726269840898351, −6.256747313418398, −5.730249377854872, −5.459681695316508, −4.961606196406707, −4.408063705790960, −3.652519445445070, −3.278911326423264, −2.596396824048998, −1.923334474773926, −1.628387350449971, −0.5232424691804819, 0, 0.5232424691804819, 1.628387350449971, 1.923334474773926, 2.596396824048998, 3.278911326423264, 3.652519445445070, 4.408063705790960, 4.961606196406707, 5.459681695316508, 5.730249377854872, 6.256747313418398, 6.726269840898351, 7.255408200559774, 7.831386213519442, 8.404201403655141, 8.590597492823951, 9.364241724272978, 9.608791370913008, 10.33068329136007, 10.61126691503962, 11.18350247914015, 11.29763377774385, 12.04313332073197, 12.34154896661766, 12.92074758562006

Graph of the $Z$-function along the critical line