Properties

Label 2-296208-1.1-c1-0-1
Degree $2$
Conductor $296208$
Sign $1$
Analytic cond. $2365.23$
Root an. cond. $48.6336$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s + 3·13-s + 17-s − 5·19-s − 25-s − 6·29-s − 4·35-s − 6·37-s − 4·41-s − 11·43-s − 9·47-s − 3·49-s + 6·53-s + 4·59-s − 4·61-s + 6·65-s − 9·67-s − 8·71-s + 16·73-s − 10·79-s + 9·83-s + 2·85-s − 3·89-s − 6·91-s − 10·95-s − 10·97-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.755·7-s + 0.832·13-s + 0.242·17-s − 1.14·19-s − 1/5·25-s − 1.11·29-s − 0.676·35-s − 0.986·37-s − 0.624·41-s − 1.67·43-s − 1.31·47-s − 3/7·49-s + 0.824·53-s + 0.520·59-s − 0.512·61-s + 0.744·65-s − 1.09·67-s − 0.949·71-s + 1.87·73-s − 1.12·79-s + 0.987·83-s + 0.216·85-s − 0.317·89-s − 0.628·91-s − 1.02·95-s − 1.01·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(296208\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2365.23\)
Root analytic conductor: \(48.6336\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 296208,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5468298247\)
\(L(\frac12)\) \(\approx\) \(0.5468298247\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
17 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.98373814355827, −12.20896629182363, −11.87148156799211, −11.25990806253597, −10.82187091671664, −10.30811993458566, −9.960811651682462, −9.564991175110986, −9.030090262956035, −8.587974125558494, −8.190694644216024, −7.578814675409656, −6.867267720568328, −6.564682050884322, −6.164249740839873, −5.659418053616421, −5.198459034498576, −4.647664001902727, −3.809062929102190, −3.601873215547870, −2.964450252298464, −2.292399388590819, −1.692906928400175, −1.361975782007840, −0.1838894372862091, 0.1838894372862091, 1.361975782007840, 1.692906928400175, 2.292399388590819, 2.964450252298464, 3.601873215547870, 3.809062929102190, 4.647664001902727, 5.198459034498576, 5.659418053616421, 6.164249740839873, 6.564682050884322, 6.867267720568328, 7.578814675409656, 8.190694644216024, 8.587974125558494, 9.030090262956035, 9.564991175110986, 9.960811651682462, 10.30811993458566, 10.82187091671664, 11.25990806253597, 11.87148156799211, 12.20896629182363, 12.98373814355827

Graph of the $Z$-function along the critical line