Properties

Label 2-293046-1.1-c1-0-30
Degree $2$
Conductor $293046$
Sign $-1$
Analytic cond. $2339.98$
Root an. cond. $48.3733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 2·5-s − 6-s − 2·7-s + 8-s + 9-s − 2·10-s − 12-s − 2·14-s + 2·15-s + 16-s + 18-s − 6·19-s − 2·20-s + 2·21-s + 4·23-s − 24-s − 25-s − 27-s − 2·28-s + 10·29-s + 2·30-s − 10·31-s + 32-s + 4·35-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.632·10-s − 0.288·12-s − 0.534·14-s + 0.516·15-s + 1/4·16-s + 0.235·18-s − 1.37·19-s − 0.447·20-s + 0.436·21-s + 0.834·23-s − 0.204·24-s − 1/5·25-s − 0.192·27-s − 0.377·28-s + 1.85·29-s + 0.365·30-s − 1.79·31-s + 0.176·32-s + 0.676·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(293046\)    =    \(2 \cdot 3 \cdot 13^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2339.98\)
Root analytic conductor: \(48.3733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 293046,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
13 \( 1 \)
17 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.83746372879062, −12.52276580815316, −12.04919926437697, −11.67050334634394, −11.21116183086067, −10.64627924690505, −10.48180991246625, −9.848138313213198, −9.244745202216564, −8.767780972172581, −8.222507246405092, −7.710402778423336, −7.196068239562184, −6.747459035402137, −6.315835177089756, −5.965313223287185, −5.256293939417764, −4.792308299246188, −4.294179285403598, −3.901160771563795, −3.280304832092438, −2.883590715694078, −2.139788031201585, −1.472277636570888, −0.6199758784651995, 0, 0.6199758784651995, 1.472277636570888, 2.139788031201585, 2.883590715694078, 3.280304832092438, 3.901160771563795, 4.294179285403598, 4.792308299246188, 5.256293939417764, 5.965313223287185, 6.315835177089756, 6.747459035402137, 7.196068239562184, 7.710402778423336, 8.222507246405092, 8.767780972172581, 9.244745202216564, 9.848138313213198, 10.48180991246625, 10.64627924690505, 11.21116183086067, 11.67050334634394, 12.04919926437697, 12.52276580815316, 12.83746372879062

Graph of the $Z$-function along the critical line