Properties

Label 2-283140-1.1-c1-0-40
Degree $2$
Conductor $283140$
Sign $-1$
Analytic cond. $2260.88$
Root an. cond. $47.5487$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s − 13-s + 3·17-s + 4·19-s + 23-s + 25-s − 4·29-s − 7·31-s + 2·35-s − 2·37-s − 4·41-s + 8·43-s − 3·47-s − 3·49-s − 11·53-s − 6·59-s + 7·61-s − 65-s − 2·67-s − 12·71-s + 2·73-s − 15·79-s + 4·83-s + 3·85-s − 10·89-s − 2·91-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s − 0.277·13-s + 0.727·17-s + 0.917·19-s + 0.208·23-s + 1/5·25-s − 0.742·29-s − 1.25·31-s + 0.338·35-s − 0.328·37-s − 0.624·41-s + 1.21·43-s − 0.437·47-s − 3/7·49-s − 1.51·53-s − 0.781·59-s + 0.896·61-s − 0.124·65-s − 0.244·67-s − 1.42·71-s + 0.234·73-s − 1.68·79-s + 0.439·83-s + 0.325·85-s − 1.05·89-s − 0.209·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(283140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(2260.88\)
Root analytic conductor: \(47.5487\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 283140,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 15 T + p T^{2} \) 1.79.p
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92802976769124, −12.58238867024804, −12.01188370264409, −11.55087042219143, −11.15331505317711, −10.75965694942858, −10.13166528257383, −9.774834382690844, −9.292907926037530, −8.873339934152585, −8.316832822365790, −7.787905153583814, −7.301590873250418, −7.128980325236204, −6.233968525549756, −5.790490478256801, −5.427561149933320, −4.821571798119977, −4.531795904216840, −3.645676691372149, −3.279464930037938, −2.695149099130066, −1.832620028645277, −1.630587863030656, −0.8774323562178688, 0, 0.8774323562178688, 1.630587863030656, 1.832620028645277, 2.695149099130066, 3.279464930037938, 3.645676691372149, 4.531795904216840, 4.821571798119977, 5.427561149933320, 5.790490478256801, 6.233968525549756, 7.128980325236204, 7.301590873250418, 7.787905153583814, 8.316832822365790, 8.873339934152585, 9.292907926037530, 9.774834382690844, 10.13166528257383, 10.75965694942858, 11.15331505317711, 11.55087042219143, 12.01188370264409, 12.58238867024804, 12.92802976769124

Graph of the $Z$-function along the critical line