Properties

Label 2-283140-1.1-c1-0-22
Degree $2$
Conductor $283140$
Sign $-1$
Analytic cond. $2260.88$
Root an. cond. $47.5487$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s − 13-s − 3·17-s − 5·19-s + 6·23-s + 25-s − 6·29-s + 2·31-s − 2·35-s + 5·37-s + 9·41-s + 43-s + 3·47-s − 3·49-s + 12·59-s − 8·61-s − 65-s + 5·67-s − 12·71-s − 2·73-s + 10·79-s − 6·83-s − 3·85-s + 2·91-s − 5·95-s − 97-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s − 0.277·13-s − 0.727·17-s − 1.14·19-s + 1.25·23-s + 1/5·25-s − 1.11·29-s + 0.359·31-s − 0.338·35-s + 0.821·37-s + 1.40·41-s + 0.152·43-s + 0.437·47-s − 3/7·49-s + 1.56·59-s − 1.02·61-s − 0.124·65-s + 0.610·67-s − 1.42·71-s − 0.234·73-s + 1.12·79-s − 0.658·83-s − 0.325·85-s + 0.209·91-s − 0.512·95-s − 0.101·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(283140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(2260.88\)
Root analytic conductor: \(47.5487\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 283140,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.02350392499831, −12.64263288373774, −12.18036105833692, −11.49455037334300, −11.05583151014361, −10.71933153957618, −10.26191691762516, −9.514796849991498, −9.428218236257761, −8.929203602342205, −8.382351900982870, −7.880065072404980, −7.164539651966142, −6.924030780441862, −6.351380674161802, −5.926117716304671, −5.475048353925091, −4.796973756244179, −4.307636527509694, −3.872280890253833, −3.119087701449196, −2.612762488249250, −2.217936086292099, −1.468347763854084, −0.7147523413817716, 0, 0.7147523413817716, 1.468347763854084, 2.217936086292099, 2.612762488249250, 3.119087701449196, 3.872280890253833, 4.307636527509694, 4.796973756244179, 5.475048353925091, 5.926117716304671, 6.351380674161802, 6.924030780441862, 7.164539651966142, 7.880065072404980, 8.382351900982870, 8.929203602342205, 9.428218236257761, 9.514796849991498, 10.26191691762516, 10.71933153957618, 11.05583151014361, 11.49455037334300, 12.18036105833692, 12.64263288373774, 13.02350392499831

Graph of the $Z$-function along the critical line