Properties

Label 2-281775-1.1-c1-0-48
Degree $2$
Conductor $281775$
Sign $-1$
Analytic cond. $2249.98$
Root an. cond. $47.4340$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s − 6-s + 2·7-s − 3·8-s + 9-s + 2·11-s + 12-s − 13-s + 2·14-s − 16-s + 18-s + 4·19-s − 2·21-s + 2·22-s − 4·23-s + 3·24-s − 26-s − 27-s − 2·28-s + 2·31-s + 5·32-s − 2·33-s − 36-s + 10·37-s + 4·38-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s + 0.755·7-s − 1.06·8-s + 1/3·9-s + 0.603·11-s + 0.288·12-s − 0.277·13-s + 0.534·14-s − 1/4·16-s + 0.235·18-s + 0.917·19-s − 0.436·21-s + 0.426·22-s − 0.834·23-s + 0.612·24-s − 0.196·26-s − 0.192·27-s − 0.377·28-s + 0.359·31-s + 0.883·32-s − 0.348·33-s − 1/6·36-s + 1.64·37-s + 0.648·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(281775\)    =    \(3 \cdot 5^{2} \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2249.98\)
Root analytic conductor: \(47.4340\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 281775,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 \)
13 \( 1 + T \)
17 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.77870167736930, −12.64716442410441, −11.96628558084245, −11.72155240840875, −11.36406237284402, −10.82267252990079, −10.13971923599908, −9.833776016644863, −9.208283884938723, −9.004395194200732, −8.206050330573761, −7.825115588067577, −7.433857106399787, −6.657588594301511, −6.208259479812988, −5.808702255209925, −5.333355378784900, −4.686090784572669, −4.541390124017405, −3.952822005957474, −3.385387180770175, −2.797779413023306, −2.098603286180044, −1.343087374763661, −0.8154676443338672, 0, 0.8154676443338672, 1.343087374763661, 2.098603286180044, 2.797779413023306, 3.385387180770175, 3.952822005957474, 4.541390124017405, 4.686090784572669, 5.333355378784900, 5.808702255209925, 6.208259479812988, 6.657588594301511, 7.433857106399787, 7.825115588067577, 8.206050330573761, 9.004395194200732, 9.208283884938723, 9.833776016644863, 10.13971923599908, 10.82267252990079, 11.36406237284402, 11.72155240840875, 11.96628558084245, 12.64716442410441, 12.77870167736930

Graph of the $Z$-function along the critical line