Properties

Label 2-28050-1.1-c1-0-40
Degree $2$
Conductor $28050$
Sign $1$
Analytic cond. $223.980$
Root an. cond. $14.9659$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 2·7-s + 8-s + 9-s + 11-s − 12-s + 4·13-s − 2·14-s + 16-s + 17-s + 18-s + 8·19-s + 2·21-s + 22-s − 3·23-s − 24-s + 4·26-s − 27-s − 2·28-s + 6·29-s + 8·31-s + 32-s − 33-s + 34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s + 0.301·11-s − 0.288·12-s + 1.10·13-s − 0.534·14-s + 1/4·16-s + 0.242·17-s + 0.235·18-s + 1.83·19-s + 0.436·21-s + 0.213·22-s − 0.625·23-s − 0.204·24-s + 0.784·26-s − 0.192·27-s − 0.377·28-s + 1.11·29-s + 1.43·31-s + 0.176·32-s − 0.174·33-s + 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28050\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 17\)
Sign: $1$
Analytic conductor: \(223.980\)
Root analytic conductor: \(14.9659\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 28050,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.681060728\)
\(L(\frac12)\) \(\approx\) \(3.681060728\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 - T \)
17 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 15 T + p T^{2} \) 1.59.ap
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.36708216994355, −14.55103000944538, −14.07782924670673, −13.61130806721594, −13.05646437728576, −12.67500713203131, −11.86178055332795, −11.60204579562605, −11.23068069949753, −10.20684256450785, −10.01809711408121, −9.450040462007265, −8.539266521346821, −8.041162965484816, −7.270302189204677, −6.702654348533014, −6.119134737409904, −5.832666087892625, −5.016909149193096, −4.451108596372350, −3.668159786759977, −3.213325340233401, −2.475291020996545, −1.307244531477160, −0.7778972001944370, 0.7778972001944370, 1.307244531477160, 2.475291020996545, 3.213325340233401, 3.668159786759977, 4.451108596372350, 5.016909149193096, 5.832666087892625, 6.119134737409904, 6.702654348533014, 7.270302189204677, 8.041162965484816, 8.539266521346821, 9.450040462007265, 10.01809711408121, 10.20684256450785, 11.23068069949753, 11.60204579562605, 11.86178055332795, 12.67500713203131, 13.05646437728576, 13.61130806721594, 14.07782924670673, 14.55103000944538, 15.36708216994355

Graph of the $Z$-function along the critical line