| L(s) = 1 | − 2-s − 3-s + 4-s − 5-s + 6-s − 7-s − 8-s + 9-s + 10-s + 4·11-s − 12-s + 13-s + 14-s + 15-s + 16-s + 6·17-s − 18-s + 4·19-s − 20-s + 21-s − 4·22-s − 4·23-s + 24-s + 25-s − 26-s − 27-s − 28-s + ⋯ |
| L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.20·11-s − 0.288·12-s + 0.277·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s + 0.218·21-s − 0.852·22-s − 0.834·23-s + 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.192·27-s − 0.188·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2730 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2730 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.9946261158\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9946261158\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | \( 1 + T \) | |
| 3 | \( 1 + T \) | |
| 5 | \( 1 + T \) | |
| 7 | \( 1 + T \) | |
| 13 | \( 1 - T \) | |
| good | 11 | \( 1 - 4 T + p T^{2} \) | 1.11.ae |
| 17 | \( 1 - 6 T + p T^{2} \) | 1.17.ag |
| 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae |
| 23 | \( 1 + 4 T + p T^{2} \) | 1.23.e |
| 29 | \( 1 - 2 T + p T^{2} \) | 1.29.ac |
| 31 | \( 1 + 4 T + p T^{2} \) | 1.31.e |
| 37 | \( 1 + 10 T + p T^{2} \) | 1.37.k |
| 41 | \( 1 + 2 T + p T^{2} \) | 1.41.c |
| 43 | \( 1 - 4 T + p T^{2} \) | 1.43.ae |
| 47 | \( 1 + p T^{2} \) | 1.47.a |
| 53 | \( 1 + 2 T + p T^{2} \) | 1.53.c |
| 59 | \( 1 - 4 T + p T^{2} \) | 1.59.ae |
| 61 | \( 1 + 10 T + p T^{2} \) | 1.61.k |
| 67 | \( 1 + 8 T + p T^{2} \) | 1.67.i |
| 71 | \( 1 - 16 T + p T^{2} \) | 1.71.aq |
| 73 | \( 1 - 6 T + p T^{2} \) | 1.73.ag |
| 79 | \( 1 - 16 T + p T^{2} \) | 1.79.aq |
| 83 | \( 1 - 4 T + p T^{2} \) | 1.83.ae |
| 89 | \( 1 + 10 T + p T^{2} \) | 1.89.k |
| 97 | \( 1 + 2 T + p T^{2} \) | 1.97.c |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.935135293830011037642486154960, −8.007933512983617187523044963798, −7.36181404401723819855589246585, −6.62259816834355851356008630118, −5.91276108353409598242316420778, −5.08709635440666110617501490602, −3.82980616481321581659751224651, −3.29165049422406830347491469846, −1.71782140851470133221170486296, −0.74415711200798908165809386442,
0.74415711200798908165809386442, 1.71782140851470133221170486296, 3.29165049422406830347491469846, 3.82980616481321581659751224651, 5.08709635440666110617501490602, 5.91276108353409598242316420778, 6.62259816834355851356008630118, 7.36181404401723819855589246585, 8.007933512983617187523044963798, 8.935135293830011037642486154960