Properties

Label 2-259e2-1.1-c1-0-5
Degree $2$
Conductor $67081$
Sign $1$
Analytic cond. $535.644$
Root an. cond. $23.1439$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 4·5-s + 3·8-s − 3·9-s − 4·10-s + 4·11-s + 4·13-s − 16-s + 3·18-s − 6·19-s − 4·20-s − 4·22-s + 4·23-s + 11·25-s − 4·26-s + 6·29-s + 2·31-s − 5·32-s + 3·36-s + 6·38-s + 12·40-s + 6·41-s + 4·43-s − 4·44-s − 12·45-s − 4·46-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.78·5-s + 1.06·8-s − 9-s − 1.26·10-s + 1.20·11-s + 1.10·13-s − 1/4·16-s + 0.707·18-s − 1.37·19-s − 0.894·20-s − 0.852·22-s + 0.834·23-s + 11/5·25-s − 0.784·26-s + 1.11·29-s + 0.359·31-s − 0.883·32-s + 1/2·36-s + 0.973·38-s + 1.89·40-s + 0.937·41-s + 0.609·43-s − 0.603·44-s − 1.78·45-s − 0.589·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 67081 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 67081 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(67081\)    =    \(7^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(535.644\)
Root analytic conductor: \(23.1439\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 67081,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.762454630\)
\(L(\frac12)\) \(\approx\) \(2.762454630\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad7 \( 1 \)
37 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.01431280743589, −13.72358010430540, −13.43296011354469, −12.74576859420617, −12.29385455745119, −11.54073421978106, −10.83184932054189, −10.56891544106432, −10.19750021976585, −9.252471356434685, −9.131926372824879, −8.821466386739530, −8.345263913922423, −7.563108276417201, −6.728678811931123, −6.317472407125600, −5.890163024824277, −5.411393445523097, −4.551684309671031, −4.182054548771638, −3.259491610953185, −2.549060785284073, −1.912672052882517, −1.177741103832617, −0.7292773829235355, 0.7292773829235355, 1.177741103832617, 1.912672052882517, 2.549060785284073, 3.259491610953185, 4.182054548771638, 4.551684309671031, 5.411393445523097, 5.890163024824277, 6.317472407125600, 6.728678811931123, 7.563108276417201, 8.345263913922423, 8.821466386739530, 9.131926372824879, 9.252471356434685, 10.19750021976585, 10.56891544106432, 10.83184932054189, 11.54073421978106, 12.29385455745119, 12.74576859420617, 13.43296011354469, 13.72358010430540, 14.01431280743589

Graph of the $Z$-function along the critical line