Properties

Label 2-25410-1.1-c1-0-16
Degree $2$
Conductor $25410$
Sign $1$
Analytic cond. $202.899$
Root an. cond. $14.2442$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s + 7-s − 8-s + 9-s + 10-s + 12-s − 4·13-s − 14-s − 15-s + 16-s − 18-s + 4·19-s − 20-s + 21-s + 6·23-s − 24-s + 25-s + 4·26-s + 27-s + 28-s + 2·29-s + 30-s + 8·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s − 1.10·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.235·18-s + 0.917·19-s − 0.223·20-s + 0.218·21-s + 1.25·23-s − 0.204·24-s + 1/5·25-s + 0.784·26-s + 0.192·27-s + 0.188·28-s + 0.371·29-s + 0.182·30-s + 1.43·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25410\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(202.899\)
Root analytic conductor: \(14.2442\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 25410,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.996350969\)
\(L(\frac12)\) \(\approx\) \(1.996350969\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 \)
good13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.31334105955029, −15.02807978670407, −14.23104925485720, −13.98009616010906, −13.18760752210617, −12.53389006196143, −12.06473550456985, −11.52714111857173, −11.00523383571772, −10.28817770688772, −9.839007976005538, −9.294277960957835, −8.685949637711695, −8.225817470425458, −7.475715478174820, −7.329454993133178, −6.590800557333479, −5.786109862681687, −4.871148334082996, −4.588101681470615, −3.545148070304659, −2.885673476623592, −2.386143002225390, −1.367809315464899, −0.6471755359335562, 0.6471755359335562, 1.367809315464899, 2.386143002225390, 2.885673476623592, 3.545148070304659, 4.588101681470615, 4.871148334082996, 5.786109862681687, 6.590800557333479, 7.329454993133178, 7.475715478174820, 8.225817470425458, 8.685949637711695, 9.294277960957835, 9.839007976005538, 10.28817770688772, 11.00523383571772, 11.52714111857173, 12.06473550456985, 12.53389006196143, 13.18760752210617, 13.98009616010906, 14.23104925485720, 15.02807978670407, 15.31334105955029

Graph of the $Z$-function along the critical line