Properties

Label 2-244800-1.1-c1-0-12
Degree $2$
Conductor $244800$
Sign $1$
Analytic cond. $1954.73$
Root an. cond. $44.2124$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 3·11-s + 3·13-s − 17-s − 19-s + 3·23-s − 10·29-s + 6·31-s − 4·37-s − 5·41-s − 43-s − 2·47-s + 9·49-s + 14·53-s − 6·59-s − 8·61-s − 12·67-s − 12·71-s − 2·73-s − 12·77-s − 14·79-s − 6·83-s − 16·89-s − 12·91-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 1.51·7-s + 0.904·11-s + 0.832·13-s − 0.242·17-s − 0.229·19-s + 0.625·23-s − 1.85·29-s + 1.07·31-s − 0.657·37-s − 0.780·41-s − 0.152·43-s − 0.291·47-s + 9/7·49-s + 1.92·53-s − 0.781·59-s − 1.02·61-s − 1.46·67-s − 1.42·71-s − 0.234·73-s − 1.36·77-s − 1.57·79-s − 0.658·83-s − 1.69·89-s − 1.25·91-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244800\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(1954.73\)
Root analytic conductor: \(44.2124\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 244800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5825537560\)
\(L(\frac12)\) \(\approx\) \(0.5825537560\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.98408283216360, −12.46950173279329, −11.85371208810910, −11.64955027479362, −10.97729718049013, −10.53313495832781, −10.04407757573705, −9.626384659335607, −9.054867151151444, −8.824558559189588, −8.373192100464108, −7.525787062797084, −7.068387162817016, −6.751964869827333, −6.132516239011365, −5.888855086454120, −5.308057406448451, −4.455755684300645, −4.044783674802422, −3.549229567112708, −3.049917453928617, −2.585237598781396, −1.594720227420503, −1.270385705776668, −0.2108538234987313, 0.2108538234987313, 1.270385705776668, 1.594720227420503, 2.585237598781396, 3.049917453928617, 3.549229567112708, 4.044783674802422, 4.455755684300645, 5.308057406448451, 5.888855086454120, 6.132516239011365, 6.751964869827333, 7.068387162817016, 7.525787062797084, 8.373192100464108, 8.824558559189588, 9.054867151151444, 9.626384659335607, 10.04407757573705, 10.53313495832781, 10.97729718049013, 11.64955027479362, 11.85371208810910, 12.46950173279329, 12.98408283216360

Graph of the $Z$-function along the critical line