Properties

Label 2-2320-1.1-c1-0-46
Degree $2$
Conductor $2320$
Sign $-1$
Analytic cond. $18.5252$
Root an. cond. $4.30410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3·9-s − 2·13-s − 6·17-s + 8·19-s + 25-s + 29-s − 4·31-s − 2·37-s − 6·41-s − 8·43-s − 3·45-s − 4·47-s − 7·49-s − 10·53-s − 4·59-s − 2·61-s − 2·65-s + 12·67-s + 8·71-s + 2·73-s − 4·79-s + 9·81-s − 12·83-s − 6·85-s − 6·89-s + 8·95-s + ⋯
L(s)  = 1  + 0.447·5-s − 9-s − 0.554·13-s − 1.45·17-s + 1.83·19-s + 1/5·25-s + 0.185·29-s − 0.718·31-s − 0.328·37-s − 0.937·41-s − 1.21·43-s − 0.447·45-s − 0.583·47-s − 49-s − 1.37·53-s − 0.520·59-s − 0.256·61-s − 0.248·65-s + 1.46·67-s + 0.949·71-s + 0.234·73-s − 0.450·79-s + 81-s − 1.31·83-s − 0.650·85-s − 0.635·89-s + 0.820·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(18.5252\)
Root analytic conductor: \(4.30410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + p T^{2} \) 1.23.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.647934600595178283515836213746, −7.928909390213831328069938294430, −6.96859752201693024839991175972, −6.33047501586183109197644462740, −5.31224758932438376476815029947, −4.87923251843982968892721114541, −3.51236625302999117139815117924, −2.73402923782147721521839100850, −1.66599961009023702931052299060, 0, 1.66599961009023702931052299060, 2.73402923782147721521839100850, 3.51236625302999117139815117924, 4.87923251843982968892721114541, 5.31224758932438376476815029947, 6.33047501586183109197644462740, 6.96859752201693024839991175972, 7.928909390213831328069938294430, 8.647934600595178283515836213746

Graph of the $Z$-function along the critical line