Properties

Label 2-21168-1.1-c1-0-10
Degree $2$
Conductor $21168$
Sign $1$
Analytic cond. $169.027$
Root an. cond. $13.0010$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 2·11-s − 5·13-s + 6·17-s − 4·19-s + 6·23-s + 11·25-s − 6·29-s − 7·31-s + 7·37-s + 2·41-s + 7·43-s + 2·47-s − 6·53-s − 8·55-s − 6·59-s + 9·61-s + 20·65-s + 7·67-s − 8·71-s − 10·73-s − 79-s − 14·83-s − 24·85-s + 12·89-s + 16·95-s + 15·97-s + ⋯
L(s)  = 1  − 1.78·5-s + 0.603·11-s − 1.38·13-s + 1.45·17-s − 0.917·19-s + 1.25·23-s + 11/5·25-s − 1.11·29-s − 1.25·31-s + 1.15·37-s + 0.312·41-s + 1.06·43-s + 0.291·47-s − 0.824·53-s − 1.07·55-s − 0.781·59-s + 1.15·61-s + 2.48·65-s + 0.855·67-s − 0.949·71-s − 1.17·73-s − 0.112·79-s − 1.53·83-s − 2.60·85-s + 1.27·89-s + 1.64·95-s + 1.52·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21168\)    =    \(2^{4} \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(169.027\)
Root analytic conductor: \(13.0010\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 21168,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9375404757\)
\(L(\frac12)\) \(\approx\) \(0.9375404757\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 9 T + p T^{2} \) 1.61.aj
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 15 T + p T^{2} \) 1.97.ap
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.55632334977715, −14.83064923776987, −14.61578945321711, −14.44819093506366, −13.14898197991532, −12.71205195542492, −12.30874410700265, −11.79573618200660, −11.20548808936192, −10.86502015713333, −10.07364932532710, −9.318473538652612, −8.962948151570343, −8.107901370727957, −7.582678726859549, −7.330614758539957, −6.686598606785197, −5.725612382636720, −5.091930003305483, −4.344491361304970, −3.924535977017106, −3.210328129207268, −2.552959461264987, −1.358659384971096, −0.4206151719111524, 0.4206151719111524, 1.358659384971096, 2.552959461264987, 3.210328129207268, 3.924535977017106, 4.344491361304970, 5.091930003305483, 5.725612382636720, 6.686598606785197, 7.330614758539957, 7.582678726859549, 8.107901370727957, 8.962948151570343, 9.318473538652612, 10.07364932532710, 10.86502015713333, 11.20548808936192, 11.79573618200660, 12.30874410700265, 12.71205195542492, 13.14898197991532, 14.44819093506366, 14.61578945321711, 14.83064923776987, 15.55632334977715

Graph of the $Z$-function along the critical line