Properties

Label 2-200376-1.1-c1-0-10
Degree $2$
Conductor $200376$
Sign $1$
Analytic cond. $1600.01$
Root an. cond. $40.0001$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 2·13-s + 4·17-s + 4·19-s − 23-s − 4·25-s − 10·29-s + 9·31-s + 35-s − 2·37-s + 3·41-s + 43-s − 4·47-s − 6·49-s − 5·53-s + 14·59-s − 10·61-s − 2·65-s + 14·67-s + 12·71-s + 8·73-s + 7·79-s + 6·83-s − 4·85-s − 11·89-s − 2·91-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 0.554·13-s + 0.970·17-s + 0.917·19-s − 0.208·23-s − 4/5·25-s − 1.85·29-s + 1.61·31-s + 0.169·35-s − 0.328·37-s + 0.468·41-s + 0.152·43-s − 0.583·47-s − 6/7·49-s − 0.686·53-s + 1.82·59-s − 1.28·61-s − 0.248·65-s + 1.71·67-s + 1.42·71-s + 0.936·73-s + 0.787·79-s + 0.658·83-s − 0.433·85-s − 1.16·89-s − 0.209·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200376\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1600.01\)
Root analytic conductor: \(40.0001\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 200376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.234261621\)
\(L(\frac12)\) \(\approx\) \(2.234261621\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 11 T + p T^{2} \) 1.89.l
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00041263436590, −12.59163477833016, −12.13360584518914, −11.57492517305844, −11.29341181782509, −10.85824849347939, −9.998205563386583, −9.846618715432049, −9.425751465601169, −8.773225350418974, −8.194562490404308, −7.788905147221794, −7.484440563162218, −6.788519458143159, −6.249754027116303, −5.862647081902823, −5.202482267832373, −4.848208011531501, −3.967568928273829, −3.572256183083467, −3.294898699950896, −2.442655184964730, −1.835827910897311, −1.055862018478154, −0.4797407370165758, 0.4797407370165758, 1.055862018478154, 1.835827910897311, 2.442655184964730, 3.294898699950896, 3.572256183083467, 3.967568928273829, 4.848208011531501, 5.202482267832373, 5.862647081902823, 6.249754027116303, 6.788519458143159, 7.484440563162218, 7.788905147221794, 8.194562490404308, 8.773225350418974, 9.425751465601169, 9.846618715432049, 9.998205563386583, 10.85824849347939, 11.29341181782509, 11.57492517305844, 12.13360584518914, 12.59163477833016, 13.00041263436590

Graph of the $Z$-function along the critical line