sage:E = EllipticCurve("p1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 200376.p1 has
rank \(0\).
|
Bad L-factors: |
Prime |
L-Factor |
\(2\) | \(1\) |
\(3\) | \(1\) |
\(11\) | \(1\) |
\(23\) | \(1 + T\) |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over \(\mathbb{F}_p\) |
\(5\) |
\( 1 + T + 5 T^{2}\) |
1.5.b
|
\(7\) |
\( 1 + T + 7 T^{2}\) |
1.7.b
|
\(13\) |
\( 1 - 2 T + 13 T^{2}\) |
1.13.ac
|
\(17\) |
\( 1 - 4 T + 17 T^{2}\) |
1.17.ae
|
\(19\) |
\( 1 - 4 T + 19 T^{2}\) |
1.19.ae
|
\(29\) |
\( 1 + 10 T + 29 T^{2}\) |
1.29.k
|
$\cdots$ | $\cdots$ | $\cdots$ |
|
|
See L-function page for more information |
The elliptic curves in class 200376.p do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 200376.p
sage:E.isogeny_class().curves