Properties

Label 2-198550-1.1-c1-0-4
Degree $2$
Conductor $198550$
Sign $1$
Analytic cond. $1585.42$
Root an. cond. $39.8174$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s − 4·7-s − 8-s + 9-s + 11-s + 2·12-s + 2·13-s + 4·14-s + 16-s + 2·17-s − 18-s − 8·21-s − 22-s − 2·24-s − 2·26-s − 4·27-s − 4·28-s + 6·29-s − 6·31-s − 32-s + 2·33-s − 2·34-s + 36-s + 4·37-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s + 0.301·11-s + 0.577·12-s + 0.554·13-s + 1.06·14-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 1.74·21-s − 0.213·22-s − 0.408·24-s − 0.392·26-s − 0.769·27-s − 0.755·28-s + 1.11·29-s − 1.07·31-s − 0.176·32-s + 0.348·33-s − 0.342·34-s + 1/6·36-s + 0.657·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198550\)    =    \(2 \cdot 5^{2} \cdot 11 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(1585.42\)
Root analytic conductor: \(39.8174\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 198550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7665459650\)
\(L(\frac12)\) \(\approx\) \(0.7665459650\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
11 \( 1 - T \)
19 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.12863916515045, −12.68864569229459, −12.14868786504923, −11.65072473256910, −11.15975020479861, −10.48242521789458, −10.02937226262734, −9.753268788345551, −9.136712989246020, −8.980765305945968, −8.276454333615675, −8.099306341489376, −7.334355353974738, −6.960854104238402, −6.364546577015377, −6.055919882973831, −5.401530987945457, −4.611747345419910, −3.837585962029603, −3.433655273062668, −2.984621883314216, −2.660565631306698, −1.713738644734208, −1.334911882762549, −0.2494373115010198, 0.2494373115010198, 1.334911882762549, 1.713738644734208, 2.660565631306698, 2.984621883314216, 3.433655273062668, 3.837585962029603, 4.611747345419910, 5.401530987945457, 6.055919882973831, 6.364546577015377, 6.960854104238402, 7.334355353974738, 8.099306341489376, 8.276454333615675, 8.980765305945968, 9.136712989246020, 9.753268788345551, 10.02937226262734, 10.48242521789458, 11.15975020479861, 11.65072473256910, 12.14868786504923, 12.68864569229459, 13.12863916515045

Graph of the $Z$-function along the critical line