Properties

Label 2-1984-1.1-c1-0-51
Degree $2$
Conductor $1984$
Sign $-1$
Analytic cond. $15.8423$
Root an. cond. $3.98024$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·5-s + 9-s − 2·11-s − 4·13-s − 4·15-s + 6·17-s − 4·19-s − 25-s − 4·27-s + 4·29-s − 31-s − 4·33-s − 4·37-s − 8·39-s − 10·41-s + 2·43-s − 2·45-s − 8·47-s − 7·49-s + 12·51-s − 4·53-s + 4·55-s − 8·57-s + 8·65-s − 12·67-s + 2·73-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.894·5-s + 1/3·9-s − 0.603·11-s − 1.10·13-s − 1.03·15-s + 1.45·17-s − 0.917·19-s − 1/5·25-s − 0.769·27-s + 0.742·29-s − 0.179·31-s − 0.696·33-s − 0.657·37-s − 1.28·39-s − 1.56·41-s + 0.304·43-s − 0.298·45-s − 1.16·47-s − 49-s + 1.68·51-s − 0.549·53-s + 0.539·55-s − 1.05·57-s + 0.992·65-s − 1.46·67-s + 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1984\)    =    \(2^{6} \cdot 31\)
Sign: $-1$
Analytic conductor: \(15.8423\)
Root analytic conductor: \(3.98024\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1984,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
31 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.538758733922093101999460970330, −8.000114529430581410226413786652, −7.58601033116152401988269635391, −6.63079443859875581548723313991, −5.40277194504855072510428472476, −4.57342872063779904798041984921, −3.52159346119794100898696954793, −2.96074059646736536983974611040, −1.88272435199862659869905037397, 0, 1.88272435199862659869905037397, 2.96074059646736536983974611040, 3.52159346119794100898696954793, 4.57342872063779904798041984921, 5.40277194504855072510428472476, 6.63079443859875581548723313991, 7.58601033116152401988269635391, 8.000114529430581410226413786652, 8.538758733922093101999460970330

Graph of the $Z$-function along the critical line