Properties

Label 2-198198-1.1-c1-0-123
Degree $2$
Conductor $198198$
Sign $-1$
Analytic cond. $1582.61$
Root an. cond. $39.7821$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 7-s + 8-s + 2·10-s + 13-s + 14-s + 16-s + 6·17-s − 2·19-s + 2·20-s − 4·23-s − 25-s + 26-s + 28-s + 6·29-s + 32-s + 6·34-s + 2·35-s − 4·37-s − 2·38-s + 2·40-s + 8·41-s − 2·43-s − 4·46-s − 4·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.377·7-s + 0.353·8-s + 0.632·10-s + 0.277·13-s + 0.267·14-s + 1/4·16-s + 1.45·17-s − 0.458·19-s + 0.447·20-s − 0.834·23-s − 1/5·25-s + 0.196·26-s + 0.188·28-s + 1.11·29-s + 0.176·32-s + 1.02·34-s + 0.338·35-s − 0.657·37-s − 0.324·38-s + 0.316·40-s + 1.24·41-s − 0.304·43-s − 0.589·46-s − 0.583·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198198\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1582.61\)
Root analytic conductor: \(39.7821\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 198198,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39357649149770, −12.78451099614515, −12.46915159285329, −11.94466018651499, −11.61263019669970, −10.92702557098101, −10.42598728757810, −10.22264598358758, −9.466455762746312, −9.299496636593411, −8.352902652401735, −8.068337821021410, −7.611165033145035, −6.928442772065132, −6.329108355265190, −6.042682848642521, −5.514169465523161, −5.092065903379153, −4.465722508911119, −3.985150125472594, −3.311471416615025, −2.809800227799195, −2.191961854790320, −1.527097236130979, −1.169273684033008, 0, 1.169273684033008, 1.527097236130979, 2.191961854790320, 2.809800227799195, 3.311471416615025, 3.985150125472594, 4.465722508911119, 5.092065903379153, 5.514169465523161, 6.042682848642521, 6.329108355265190, 6.928442772065132, 7.611165033145035, 8.068337821021410, 8.352902652401735, 9.299496636593411, 9.466455762746312, 10.22264598358758, 10.42598728757810, 10.92702557098101, 11.61263019669970, 11.94466018651499, 12.46915159285329, 12.78451099614515, 13.39357649149770

Graph of the $Z$-function along the critical line