Properties

Label 2-19800-1.1-c1-0-45
Degree $2$
Conductor $19800$
Sign $-1$
Analytic cond. $158.103$
Root an. cond. $12.5739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 11-s + 4·17-s + 4·19-s + 4·23-s − 6·29-s − 6·37-s − 10·41-s − 2·43-s − 4·47-s − 3·49-s − 2·53-s − 12·59-s − 6·61-s − 8·67-s + 8·73-s + 2·77-s − 8·79-s − 18·83-s − 14·89-s − 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + 8·119-s + ⋯
L(s)  = 1  + 0.755·7-s + 0.301·11-s + 0.970·17-s + 0.917·19-s + 0.834·23-s − 1.11·29-s − 0.986·37-s − 1.56·41-s − 0.304·43-s − 0.583·47-s − 3/7·49-s − 0.274·53-s − 1.56·59-s − 0.768·61-s − 0.977·67-s + 0.936·73-s + 0.227·77-s − 0.900·79-s − 1.97·83-s − 1.48·89-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 0.733·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(158.103\)
Root analytic conductor: \(12.5739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 18 T + p T^{2} \) 1.83.s
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.93677686634400, −15.25587589127747, −14.91057160007980, −14.32244214070138, −13.77867848466300, −13.38848796714763, −12.43381133136818, −12.24545226287075, −11.31864121979682, −11.25221468641312, −10.38718221482921, −9.785724387477451, −9.309766071312229, −8.549874984502166, −8.107821044003551, −7.354609187469196, −7.018458092036247, −6.115906246576388, −5.408262005342831, −5.017268681710795, −4.256921791560652, −3.366133925328983, −2.970388142823574, −1.653078628469374, −1.376035658749064, 0, 1.376035658749064, 1.653078628469374, 2.970388142823574, 3.366133925328983, 4.256921791560652, 5.017268681710795, 5.408262005342831, 6.115906246576388, 7.018458092036247, 7.354609187469196, 8.107821044003551, 8.549874984502166, 9.309766071312229, 9.785724387477451, 10.38718221482921, 11.25221468641312, 11.31864121979682, 12.24545226287075, 12.43381133136818, 13.38848796714763, 13.77867848466300, 14.32244214070138, 14.91057160007980, 15.25587589127747, 15.93677686634400

Graph of the $Z$-function along the critical line