Properties

Label 2-19800-1.1-c1-0-18
Degree $2$
Conductor $19800$
Sign $1$
Analytic cond. $158.103$
Root an. cond. $12.5739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 11-s + 4·17-s + 4·19-s + 6·23-s − 2·29-s + 8·31-s − 4·37-s + 6·41-s − 6·43-s + 2·47-s − 3·49-s + 12·53-s − 4·59-s + 14·61-s + 10·67-s − 8·71-s + 4·73-s + 2·77-s − 8·79-s − 2·83-s + 10·89-s − 8·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.755·7-s + 0.301·11-s + 0.970·17-s + 0.917·19-s + 1.25·23-s − 0.371·29-s + 1.43·31-s − 0.657·37-s + 0.937·41-s − 0.914·43-s + 0.291·47-s − 3/7·49-s + 1.64·53-s − 0.520·59-s + 1.79·61-s + 1.22·67-s − 0.949·71-s + 0.468·73-s + 0.227·77-s − 0.900·79-s − 0.219·83-s + 1.05·89-s − 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(158.103\)
Root analytic conductor: \(12.5739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.150822060\)
\(L(\frac12)\) \(\approx\) \(3.150822060\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.71401715392406, −14.99024426074066, −14.62883639312969, −14.09903853333525, −13.55128919186779, −12.98911407923050, −12.28927458600986, −11.73582486681754, −11.41268340036347, −10.70982105596731, −10.08092396434632, −9.595284920028108, −8.893669246657166, −8.322690027246134, −7.781877509559944, −7.131749796001232, −6.633495792326322, −5.679377531026011, −5.260885896932720, −4.639748489688625, −3.834741111514256, −3.153744158610845, −2.407521793081302, −1.386709604045879, −0.8272719222973923, 0.8272719222973923, 1.386709604045879, 2.407521793081302, 3.153744158610845, 3.834741111514256, 4.639748489688625, 5.260885896932720, 5.679377531026011, 6.633495792326322, 7.131749796001232, 7.781877509559944, 8.322690027246134, 8.893669246657166, 9.595284920028108, 10.08092396434632, 10.70982105596731, 11.41268340036347, 11.73582486681754, 12.28927458600986, 12.98911407923050, 13.55128919186779, 14.09903853333525, 14.62883639312969, 14.99024426074066, 15.71401715392406

Graph of the $Z$-function along the critical line