Properties

Label 2-19536-1.1-c1-0-29
Degree $2$
Conductor $19536$
Sign $-1$
Analytic cond. $155.995$
Root an. cond. $12.4898$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s − 11-s − 4·13-s + 2·15-s + 6·19-s − 4·23-s − 25-s + 27-s + 8·29-s − 33-s + 37-s − 4·39-s − 6·41-s + 2·43-s + 2·45-s − 8·47-s − 7·49-s − 6·53-s − 2·55-s + 6·57-s − 12·59-s − 4·61-s − 8·65-s − 4·67-s − 4·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s − 0.301·11-s − 1.10·13-s + 0.516·15-s + 1.37·19-s − 0.834·23-s − 1/5·25-s + 0.192·27-s + 1.48·29-s − 0.174·33-s + 0.164·37-s − 0.640·39-s − 0.937·41-s + 0.304·43-s + 0.298·45-s − 1.16·47-s − 49-s − 0.824·53-s − 0.269·55-s + 0.794·57-s − 1.56·59-s − 0.512·61-s − 0.992·65-s − 0.488·67-s − 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19536 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19536 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19536\)    =    \(2^{4} \cdot 3 \cdot 11 \cdot 37\)
Sign: $-1$
Analytic conductor: \(155.995\)
Root analytic conductor: \(12.4898\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19536,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 + T \)
37 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.96469783457638, −15.43381985777317, −14.71831282690931, −14.26759206244375, −13.80392215824291, −13.43259713027828, −12.74193672902056, −12.11228632157421, −11.74911532376318, −10.87309665033724, −10.10808873548988, −9.854666395868772, −9.429533085109384, −8.700953892288329, −7.941122427418378, −7.622027694619287, −6.816613728753039, −6.222258897236007, −5.520354208439762, −4.877880388168336, −4.348403573599934, −3.170706417923863, −2.886764473414258, −1.966574787003098, −1.364688516184232, 0, 1.364688516184232, 1.966574787003098, 2.886764473414258, 3.170706417923863, 4.348403573599934, 4.877880388168336, 5.520354208439762, 6.222258897236007, 6.816613728753039, 7.622027694619287, 7.941122427418378, 8.700953892288329, 9.429533085109384, 9.854666395868772, 10.10808873548988, 10.87309665033724, 11.74911532376318, 12.11228632157421, 12.74193672902056, 13.43259713027828, 13.80392215824291, 14.26759206244375, 14.71831282690931, 15.43381985777317, 15.96469783457638

Graph of the $Z$-function along the critical line