Properties

Label 2-193550-1.1-c1-0-34
Degree $2$
Conductor $193550$
Sign $1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s − 8-s + 9-s + 6·11-s + 2·12-s + 7·13-s + 16-s + 2·17-s − 18-s − 2·19-s − 6·22-s − 6·23-s − 2·24-s − 7·26-s − 4·27-s + 6·29-s − 9·31-s − 32-s + 12·33-s − 2·34-s + 36-s − 10·37-s + 2·38-s + 14·39-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.353·8-s + 1/3·9-s + 1.80·11-s + 0.577·12-s + 1.94·13-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.458·19-s − 1.27·22-s − 1.25·23-s − 0.408·24-s − 1.37·26-s − 0.769·27-s + 1.11·29-s − 1.61·31-s − 0.176·32-s + 2.08·33-s − 0.342·34-s + 1/6·36-s − 1.64·37-s + 0.324·38-s + 2.24·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.095192014\)
\(L(\frac12)\) \(\approx\) \(4.095192014\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 7 T + p T^{2} \) 1.13.ah
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15411382698574, −12.63612909525264, −12.06559856201676, −11.54128658264779, −11.32047622915376, −10.58458747304694, −10.22978106995683, −9.598541176464774, −9.157213251555238, −8.752568600904498, −8.476237735145601, −8.127033006575294, −7.437301712653856, −6.876973261385175, −6.473537989521862, −5.894058415688349, −5.559995308300858, −4.454067270191978, −3.900948584417725, −3.485300720596778, −3.303420266065905, −2.151959532946927, −1.909027999490911, −1.251128710017004, −0.6256069772110350, 0.6256069772110350, 1.251128710017004, 1.909027999490911, 2.151959532946927, 3.303420266065905, 3.485300720596778, 3.900948584417725, 4.454067270191978, 5.559995308300858, 5.894058415688349, 6.473537989521862, 6.876973261385175, 7.437301712653856, 8.127033006575294, 8.476237735145601, 8.752568600904498, 9.157213251555238, 9.598541176464774, 10.22978106995683, 10.58458747304694, 11.32047622915376, 11.54128658264779, 12.06559856201676, 12.63612909525264, 13.15411382698574

Graph of the $Z$-function along the critical line