Properties

Label 2-190400-1.1-c1-0-27
Degree $2$
Conductor $190400$
Sign $1$
Analytic cond. $1520.35$
Root an. cond. $38.9916$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 7-s + 9-s − 11-s + 2·13-s − 17-s − 5·19-s + 2·21-s + 6·23-s − 4·27-s − 5·29-s − 7·31-s − 2·33-s + 6·37-s + 4·39-s + 9·41-s − 2·43-s + 49-s − 2·51-s − 10·57-s + 7·59-s − 4·61-s + 63-s − 4·67-s + 12·69-s + 8·71-s − 11·73-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.377·7-s + 1/3·9-s − 0.301·11-s + 0.554·13-s − 0.242·17-s − 1.14·19-s + 0.436·21-s + 1.25·23-s − 0.769·27-s − 0.928·29-s − 1.25·31-s − 0.348·33-s + 0.986·37-s + 0.640·39-s + 1.40·41-s − 0.304·43-s + 1/7·49-s − 0.280·51-s − 1.32·57-s + 0.911·59-s − 0.512·61-s + 0.125·63-s − 0.488·67-s + 1.44·69-s + 0.949·71-s − 1.28·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190400\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(1520.35\)
Root analytic conductor: \(38.9916\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 190400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.228484721\)
\(L(\frac12)\) \(\approx\) \(3.228484721\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 17 T + p T^{2} \) 1.83.ar
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10725952462777, −12.93907478668131, −12.30740429951610, −11.58668125229179, −11.02609794882571, −10.94696056750877, −10.32303064532213, −9.557916972710061, −9.221281028834902, −8.828674582996748, −8.428971416051224, −7.853400969824238, −7.537267900867742, −6.967255977862178, −6.369650456847197, −5.746550983091205, −5.337155583850162, −4.605970238363818, −4.025290529062381, −3.709164735269161, −2.907721235645369, −2.570661495726943, −1.922974898477871, −1.392687774347264, −0.4524192347391059, 0.4524192347391059, 1.392687774347264, 1.922974898477871, 2.570661495726943, 2.907721235645369, 3.709164735269161, 4.025290529062381, 4.605970238363818, 5.337155583850162, 5.746550983091205, 6.369650456847197, 6.967255977862178, 7.537267900867742, 7.853400969824238, 8.428971416051224, 8.828674582996748, 9.221281028834902, 9.557916972710061, 10.32303064532213, 10.94696056750877, 11.02609794882571, 11.58668125229179, 12.30740429951610, 12.93907478668131, 13.10725952462777

Graph of the $Z$-function along the critical line