| L(s)  = 1 | + 3-s     + 5-s     − 2·7-s     + 9-s     + 2·11-s     + 4·13-s     + 15-s     − 6·17-s     + 19-s     − 2·21-s     − 4·23-s     + 25-s     + 27-s     + 8·29-s     − 8·31-s     + 2·33-s     − 2·35-s     + 8·37-s     + 4·39-s         − 2·43-s     + 45-s     + 4·47-s     − 3·49-s     − 6·51-s     − 6·53-s     + 2·55-s     + 57-s  + ⋯ | 
| L(s)  = 1 | + 0.577·3-s     + 0.447·5-s     − 0.755·7-s     + 1/3·9-s     + 0.603·11-s     + 1.10·13-s     + 0.258·15-s     − 1.45·17-s     + 0.229·19-s     − 0.436·21-s     − 0.834·23-s     + 1/5·25-s     + 0.192·27-s     + 1.48·29-s     − 1.43·31-s     + 0.348·33-s     − 0.338·35-s     + 1.31·37-s     + 0.640·39-s         − 0.304·43-s     + 0.149·45-s     + 0.583·47-s     − 3/7·49-s     − 0.840·51-s     − 0.824·53-s     + 0.269·55-s     + 0.132·57-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(2.873636425\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(2.873636425\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 - T \) |  | 
|  | 5 | \( 1 - T \) |  | 
|  | 19 | \( 1 - T \) |  | 
| good | 7 | \( 1 + 2 T + p T^{2} \) | 1.7.c | 
|  | 11 | \( 1 - 2 T + p T^{2} \) | 1.11.ac | 
|  | 13 | \( 1 - 4 T + p T^{2} \) | 1.13.ae | 
|  | 17 | \( 1 + 6 T + p T^{2} \) | 1.17.g | 
|  | 23 | \( 1 + 4 T + p T^{2} \) | 1.23.e | 
|  | 29 | \( 1 - 8 T + p T^{2} \) | 1.29.ai | 
|  | 31 | \( 1 + 8 T + p T^{2} \) | 1.31.i | 
|  | 37 | \( 1 - 8 T + p T^{2} \) | 1.37.ai | 
|  | 41 | \( 1 + p T^{2} \) | 1.41.a | 
|  | 43 | \( 1 + 2 T + p T^{2} \) | 1.43.c | 
|  | 47 | \( 1 - 4 T + p T^{2} \) | 1.47.ae | 
|  | 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g | 
|  | 59 | \( 1 - 4 T + p T^{2} \) | 1.59.ae | 
|  | 61 | \( 1 - 14 T + p T^{2} \) | 1.61.ao | 
|  | 67 | \( 1 + 8 T + p T^{2} \) | 1.67.i | 
|  | 71 | \( 1 + p T^{2} \) | 1.71.a | 
|  | 73 | \( 1 + 2 T + p T^{2} \) | 1.73.c | 
|  | 79 | \( 1 - 16 T + p T^{2} \) | 1.79.aq | 
|  | 83 | \( 1 - 8 T + p T^{2} \) | 1.83.ai | 
|  | 89 | \( 1 - 8 T + p T^{2} \) | 1.89.ai | 
|  | 97 | \( 1 + 4 T + p T^{2} \) | 1.97.e | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−15.92081586716718, −15.23286695693904, −14.64395425785689, −14.05398099350469, −13.60842255290848, −13.08014995012537, −12.74040332682879, −11.90004985960668, −11.33731702986418, −10.68495345025525, −10.16957448906200, −9.315577508035043, −9.235405824161170, −8.468607322246047, −7.964080552135377, −7.048462053327610, −6.435424648346148, −6.215170202229824, −5.299030703084599, −4.387648249044611, −3.864248737406804, −3.189879892061435, −2.388465844437560, −1.699748109998054, −0.6915184574415910, 
0.6915184574415910, 1.699748109998054, 2.388465844437560, 3.189879892061435, 3.864248737406804, 4.387648249044611, 5.299030703084599, 6.215170202229824, 6.435424648346148, 7.048462053327610, 7.964080552135377, 8.468607322246047, 9.235405824161170, 9.315577508035043, 10.16957448906200, 10.68495345025525, 11.33731702986418, 11.90004985960668, 12.74040332682879, 13.08014995012537, 13.60842255290848, 14.05398099350469, 14.64395425785689, 15.23286695693904, 15.92081586716718
