Properties

Label 2-18240-1.1-c1-0-18
Degree $2$
Conductor $18240$
Sign $1$
Analytic cond. $145.647$
Root an. cond. $12.0684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 2·7-s + 9-s + 2·11-s + 4·13-s + 15-s − 6·17-s + 19-s − 2·21-s − 4·23-s + 25-s + 27-s + 8·29-s − 8·31-s + 2·33-s − 2·35-s + 8·37-s + 4·39-s − 2·43-s + 45-s + 4·47-s − 3·49-s − 6·51-s − 6·53-s + 2·55-s + 57-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s + 0.603·11-s + 1.10·13-s + 0.258·15-s − 1.45·17-s + 0.229·19-s − 0.436·21-s − 0.834·23-s + 1/5·25-s + 0.192·27-s + 1.48·29-s − 1.43·31-s + 0.348·33-s − 0.338·35-s + 1.31·37-s + 0.640·39-s − 0.304·43-s + 0.149·45-s + 0.583·47-s − 3/7·49-s − 0.840·51-s − 0.824·53-s + 0.269·55-s + 0.132·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(145.647\)
Root analytic conductor: \(12.0684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 18240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.873636425\)
\(L(\frac12)\) \(\approx\) \(2.873636425\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
19 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.92081586716718, −15.23286695693904, −14.64395425785689, −14.05398099350469, −13.60842255290848, −13.08014995012537, −12.74040332682879, −11.90004985960668, −11.33731702986418, −10.68495345025525, −10.16957448906200, −9.315577508035043, −9.235405824161170, −8.468607322246047, −7.964080552135377, −7.048462053327610, −6.435424648346148, −6.215170202229824, −5.299030703084599, −4.387648249044611, −3.864248737406804, −3.189879892061435, −2.388465844437560, −1.699748109998054, −0.6915184574415910, 0.6915184574415910, 1.699748109998054, 2.388465844437560, 3.189879892061435, 3.864248737406804, 4.387648249044611, 5.299030703084599, 6.215170202229824, 6.435424648346148, 7.048462053327610, 7.964080552135377, 8.468607322246047, 9.235405824161170, 9.315577508035043, 10.16957448906200, 10.68495345025525, 11.33731702986418, 11.90004985960668, 12.74040332682879, 13.08014995012537, 13.60842255290848, 14.05398099350469, 14.64395425785689, 15.23286695693904, 15.92081586716718

Graph of the $Z$-function along the critical line