Properties

Label 2-182070-1.1-c1-0-101
Degree $2$
Conductor $182070$
Sign $-1$
Analytic cond. $1453.83$
Root an. cond. $38.1292$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 7-s + 8-s + 10-s + 2·11-s + 2·13-s + 14-s + 16-s + 6·19-s + 20-s + 2·22-s − 6·23-s + 25-s + 2·26-s + 28-s + 2·29-s + 32-s + 35-s − 12·37-s + 6·38-s + 40-s − 10·41-s − 8·43-s + 2·44-s − 6·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s + 0.353·8-s + 0.316·10-s + 0.603·11-s + 0.554·13-s + 0.267·14-s + 1/4·16-s + 1.37·19-s + 0.223·20-s + 0.426·22-s − 1.25·23-s + 1/5·25-s + 0.392·26-s + 0.188·28-s + 0.371·29-s + 0.176·32-s + 0.169·35-s − 1.97·37-s + 0.973·38-s + 0.158·40-s − 1.56·41-s − 1.21·43-s + 0.301·44-s − 0.884·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182070\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1453.83\)
Root analytic conductor: \(38.1292\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 182070,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 12 T + p T^{2} \) 1.37.m
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.42065815219256, −13.09732529096473, −12.36313184295027, −11.93126105782880, −11.62696983234921, −11.27806041203045, −10.48174519611125, −10.10991274282009, −9.794592946652077, −9.074685237114602, −8.544518898181383, −8.155851837373144, −7.579159698115738, −6.849304222623158, −6.656856721452073, −6.033229497435603, −5.491497843627037, −5.015182161387565, −4.669408260935852, −3.739505587655113, −3.510069488830551, −2.978395307891694, −1.996769547139215, −1.698002610679760, −1.091834008476164, 0, 1.091834008476164, 1.698002610679760, 1.996769547139215, 2.978395307891694, 3.510069488830551, 3.739505587655113, 4.669408260935852, 5.015182161387565, 5.491497843627037, 6.033229497435603, 6.656856721452073, 6.849304222623158, 7.579159698115738, 8.155851837373144, 8.544518898181383, 9.074685237114602, 9.794592946652077, 10.10991274282009, 10.48174519611125, 11.27806041203045, 11.62696983234921, 11.93126105782880, 12.36313184295027, 13.09732529096473, 13.42065815219256

Graph of the $Z$-function along the critical line