Properties

Label 2-181056-1.1-c1-0-34
Degree $2$
Conductor $181056$
Sign $-1$
Analytic cond. $1445.73$
Root an. cond. $38.0228$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·7-s + 9-s + 2·11-s + 2·13-s + 2·17-s − 4·19-s + 4·21-s − 23-s − 5·25-s − 27-s − 2·29-s − 2·33-s + 6·37-s − 2·39-s + 41-s + 2·43-s + 12·47-s + 9·49-s − 2·51-s + 2·53-s + 4·57-s − 12·59-s + 14·61-s − 4·63-s − 4·67-s + 69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.51·7-s + 1/3·9-s + 0.603·11-s + 0.554·13-s + 0.485·17-s − 0.917·19-s + 0.872·21-s − 0.208·23-s − 25-s − 0.192·27-s − 0.371·29-s − 0.348·33-s + 0.986·37-s − 0.320·39-s + 0.156·41-s + 0.304·43-s + 1.75·47-s + 9/7·49-s − 0.280·51-s + 0.274·53-s + 0.529·57-s − 1.56·59-s + 1.79·61-s − 0.503·63-s − 0.488·67-s + 0.120·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(181056\)    =    \(2^{6} \cdot 3 \cdot 23 \cdot 41\)
Sign: $-1$
Analytic conductor: \(1445.73\)
Root analytic conductor: \(38.0228\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 181056,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
23 \( 1 + T \)
41 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.33416944714914, −12.78980482343741, −12.54102329974722, −12.02827122897885, −11.52430145303379, −11.08695100174797, −10.44869213162384, −10.17291172288393, −9.573918452516455, −9.240624079921563, −8.763476852045695, −8.094170598602235, −7.505528851011542, −7.056615097596462, −6.424015270334607, −6.102102652668652, −5.824591826247140, −5.156735327121864, −4.296712189779563, −3.924043490603974, −3.562824654514917, −2.759440713939999, −2.231428645261055, −1.382758852272988, −0.6990517622483797, 0, 0.6990517622483797, 1.382758852272988, 2.231428645261055, 2.759440713939999, 3.562824654514917, 3.924043490603974, 4.296712189779563, 5.156735327121864, 5.824591826247140, 6.102102652668652, 6.424015270334607, 7.056615097596462, 7.505528851011542, 8.094170598602235, 8.763476852045695, 9.240624079921563, 9.573918452516455, 10.17291172288393, 10.44869213162384, 11.08695100174797, 11.52430145303379, 12.02827122897885, 12.54102329974722, 12.78980482343741, 13.33416944714914

Graph of the $Z$-function along the critical line