| L(s)  = 1 | − 3-s         − 4·7-s     + 9-s     + 2·11-s     + 2·13-s         + 2·17-s     − 4·19-s     + 4·21-s     − 23-s     − 5·25-s     − 27-s     − 2·29-s         − 2·33-s         + 6·37-s     − 2·39-s     + 41-s     + 2·43-s         + 12·47-s     + 9·49-s     − 2·51-s     + 2·53-s         + 4·57-s     − 12·59-s     + 14·61-s     − 4·63-s         − 4·67-s     + 69-s  + ⋯ | 
| L(s)  = 1 | − 0.577·3-s         − 1.51·7-s     + 1/3·9-s     + 0.603·11-s     + 0.554·13-s         + 0.485·17-s     − 0.917·19-s     + 0.872·21-s     − 0.208·23-s     − 25-s     − 0.192·27-s     − 0.371·29-s         − 0.348·33-s         + 0.986·37-s     − 0.320·39-s     + 0.156·41-s     + 0.304·43-s         + 1.75·47-s     + 9/7·49-s     − 0.280·51-s     + 0.274·53-s         + 0.529·57-s     − 1.56·59-s     + 1.79·61-s     − 0.503·63-s         − 0.488·67-s     + 0.120·69-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 + T \) |  | 
|  | 23 | \( 1 + T \) |  | 
|  | 41 | \( 1 - T \) |  | 
| good | 5 | \( 1 + p T^{2} \) | 1.5.a | 
|  | 7 | \( 1 + 4 T + p T^{2} \) | 1.7.e | 
|  | 11 | \( 1 - 2 T + p T^{2} \) | 1.11.ac | 
|  | 13 | \( 1 - 2 T + p T^{2} \) | 1.13.ac | 
|  | 17 | \( 1 - 2 T + p T^{2} \) | 1.17.ac | 
|  | 19 | \( 1 + 4 T + p T^{2} \) | 1.19.e | 
|  | 29 | \( 1 + 2 T + p T^{2} \) | 1.29.c | 
|  | 31 | \( 1 + p T^{2} \) | 1.31.a | 
|  | 37 | \( 1 - 6 T + p T^{2} \) | 1.37.ag | 
|  | 43 | \( 1 - 2 T + p T^{2} \) | 1.43.ac | 
|  | 47 | \( 1 - 12 T + p T^{2} \) | 1.47.am | 
|  | 53 | \( 1 - 2 T + p T^{2} \) | 1.53.ac | 
|  | 59 | \( 1 + 12 T + p T^{2} \) | 1.59.m | 
|  | 61 | \( 1 - 14 T + p T^{2} \) | 1.61.ao | 
|  | 67 | \( 1 + 4 T + p T^{2} \) | 1.67.e | 
|  | 71 | \( 1 - 12 T + p T^{2} \) | 1.71.am | 
|  | 73 | \( 1 + 14 T + p T^{2} \) | 1.73.o | 
|  | 79 | \( 1 + p T^{2} \) | 1.79.a | 
|  | 83 | \( 1 - 4 T + p T^{2} \) | 1.83.ae | 
|  | 89 | \( 1 - 6 T + p T^{2} \) | 1.89.ag | 
|  | 97 | \( 1 + 16 T + p T^{2} \) | 1.97.q | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.33416944714914, −12.78980482343741, −12.54102329974722, −12.02827122897885, −11.52430145303379, −11.08695100174797, −10.44869213162384, −10.17291172288393, −9.573918452516455, −9.240624079921563, −8.763476852045695, −8.094170598602235, −7.505528851011542, −7.056615097596462, −6.424015270334607, −6.102102652668652, −5.824591826247140, −5.156735327121864, −4.296712189779563, −3.924043490603974, −3.562824654514917, −2.759440713939999, −2.231428645261055, −1.382758852272988, −0.6990517622483797, 0, 
0.6990517622483797, 1.382758852272988, 2.231428645261055, 2.759440713939999, 3.562824654514917, 3.924043490603974, 4.296712189779563, 5.156735327121864, 5.824591826247140, 6.102102652668652, 6.424015270334607, 7.056615097596462, 7.505528851011542, 8.094170598602235, 8.763476852045695, 9.240624079921563, 9.573918452516455, 10.17291172288393, 10.44869213162384, 11.08695100174797, 11.52430145303379, 12.02827122897885, 12.54102329974722, 12.78980482343741, 13.33416944714914
