Properties

Label 2-181056-1.1-c1-0-12
Degree $2$
Conductor $181056$
Sign $1$
Analytic cond. $1445.73$
Root an. cond. $38.0228$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 2·7-s + 9-s − 4·11-s − 3·13-s + 15-s − 3·17-s + 7·19-s − 2·21-s + 23-s − 4·25-s − 27-s + 2·29-s + 31-s + 4·33-s − 2·35-s + 8·37-s + 3·39-s + 41-s − 4·43-s − 45-s − 8·47-s − 3·49-s + 3·51-s + 6·53-s + 4·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s − 1.20·11-s − 0.832·13-s + 0.258·15-s − 0.727·17-s + 1.60·19-s − 0.436·21-s + 0.208·23-s − 4/5·25-s − 0.192·27-s + 0.371·29-s + 0.179·31-s + 0.696·33-s − 0.338·35-s + 1.31·37-s + 0.480·39-s + 0.156·41-s − 0.609·43-s − 0.149·45-s − 1.16·47-s − 3/7·49-s + 0.420·51-s + 0.824·53-s + 0.539·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(181056\)    =    \(2^{6} \cdot 3 \cdot 23 \cdot 41\)
Sign: $1$
Analytic conductor: \(1445.73\)
Root analytic conductor: \(38.0228\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 181056,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.675872775\)
\(L(\frac12)\) \(\approx\) \(1.675872775\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
23 \( 1 - T \)
41 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 15 T + p T^{2} \) 1.59.ap
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.16058337914078, −12.71737400408747, −12.02842885865102, −11.70593725598740, −11.28239875046177, −11.04988307105522, −10.25049320638592, −9.868934855919557, −9.616640053050097, −8.754802812394819, −8.231198021912411, −7.833401264125390, −7.436772609132094, −6.966481796228240, −6.379201532757819, −5.600257795642865, −5.325068130490982, −4.743155692159867, −4.503175288125547, −3.649565244328150, −3.109748643671765, −2.338430472648904, −1.978750261081056, −0.9507517257535700, −0.4636386052991593, 0.4636386052991593, 0.9507517257535700, 1.978750261081056, 2.338430472648904, 3.109748643671765, 3.649565244328150, 4.503175288125547, 4.743155692159867, 5.325068130490982, 5.600257795642865, 6.379201532757819, 6.966481796228240, 7.436772609132094, 7.833401264125390, 8.231198021912411, 8.754802812394819, 9.616640053050097, 9.868934855919557, 10.25049320638592, 11.04988307105522, 11.28239875046177, 11.70593725598740, 12.02842885865102, 12.71737400408747, 13.16058337914078

Graph of the $Z$-function along the critical line