Invariants
Base field: | $\F_{73}$ |
Dimension: | $1$ |
L-polynomial: | $1 + 3 x + 73 x^{2}$ |
Frobenius angles: | $\pm0.556174157974$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-283}) \) |
Galois group: | $C_2$ |
Jacobians: | $3$ |
Isomorphism classes: | 3 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $77$ | $5467$ | $388388$ | $28390131$ | $2073141917$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $77$ | $5467$ | $388388$ | $28390131$ | $2073141917$ | $151334607424$ | $11047392242117$ | $806460082902243$ | $58871587193463044$ | $4297625828904376507$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which 0 are hyperelliptic):
- $y^2=x^3+34 x+24$
- $y^2=x^3+72 x+72$
- $y^2=x^3+56 x+56$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-283}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.73.ad | $2$ | (not in LMFDB) |