Properties

Label 2-180336-1.1-c1-0-27
Degree $2$
Conductor $180336$
Sign $-1$
Analytic cond. $1439.99$
Root an. cond. $37.9472$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·7-s + 9-s − 2·11-s − 13-s + 4·19-s + 4·21-s + 4·23-s − 5·25-s − 27-s − 10·29-s − 8·31-s + 2·33-s + 2·37-s + 39-s + 4·43-s − 2·47-s + 9·49-s − 2·53-s − 4·57-s − 10·59-s − 10·61-s − 4·63-s − 8·67-s − 4·69-s + 2·71-s + 10·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.51·7-s + 1/3·9-s − 0.603·11-s − 0.277·13-s + 0.917·19-s + 0.872·21-s + 0.834·23-s − 25-s − 0.192·27-s − 1.85·29-s − 1.43·31-s + 0.348·33-s + 0.328·37-s + 0.160·39-s + 0.609·43-s − 0.291·47-s + 9/7·49-s − 0.274·53-s − 0.529·57-s − 1.30·59-s − 1.28·61-s − 0.503·63-s − 0.977·67-s − 0.481·69-s + 0.237·71-s + 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(180336\)    =    \(2^{4} \cdot 3 \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1439.99\)
Root analytic conductor: \(37.9472\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 180336,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 2 T + p T^{2} \) 1.11.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.19339139998143, −12.86359172704576, −12.62416065454472, −12.02552783814807, −11.49725349167678, −10.98557268506818, −10.66232763677714, −10.02489232519812, −9.515168894225638, −9.340871455491100, −8.870533755761189, −7.872443307747237, −7.484535190862502, −7.253741960887966, −6.490133840259654, −6.120423802592413, −5.444945554795519, −5.367308692311263, −4.478431090318565, −3.893579269622702, −3.287680516944157, −2.985908692532765, −2.127937010727391, −1.525791752603039, −0.5347897900215215, 0, 0.5347897900215215, 1.525791752603039, 2.127937010727391, 2.985908692532765, 3.287680516944157, 3.893579269622702, 4.478431090318565, 5.367308692311263, 5.444945554795519, 6.120423802592413, 6.490133840259654, 7.253741960887966, 7.484535190862502, 7.872443307747237, 8.870533755761189, 9.340871455491100, 9.515168894225638, 10.02489232519812, 10.66232763677714, 10.98557268506818, 11.49725349167678, 12.02552783814807, 12.62416065454472, 12.86359172704576, 13.19339139998143

Graph of the $Z$-function along the critical line