Properties

Label 2-17850-1.1-c1-0-33
Degree $2$
Conductor $17850$
Sign $1$
Analytic cond. $142.532$
Root an. cond. $11.9387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 7-s + 8-s + 9-s + 6·11-s + 12-s − 4·13-s + 14-s + 16-s + 17-s + 18-s − 4·19-s + 21-s + 6·22-s + 8·23-s + 24-s − 4·26-s + 27-s + 28-s + 4·29-s + 8·31-s + 32-s + 6·33-s + 34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 1.80·11-s + 0.288·12-s − 1.10·13-s + 0.267·14-s + 1/4·16-s + 0.242·17-s + 0.235·18-s − 0.917·19-s + 0.218·21-s + 1.27·22-s + 1.66·23-s + 0.204·24-s − 0.784·26-s + 0.192·27-s + 0.188·28-s + 0.742·29-s + 1.43·31-s + 0.176·32-s + 1.04·33-s + 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(142.532\)
Root analytic conductor: \(11.9387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 17850,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.865409097\)
\(L(\frac12)\) \(\approx\) \(5.865409097\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.45451195162296, −15.11476128614319, −14.59679074530264, −14.34402565138866, −13.72985673428629, −13.08599849481400, −12.55023323391579, −11.96273641910697, −11.56344410054712, −10.94098258623393, −10.12922237340635, −9.676490072862720, −8.944167721160688, −8.499807383266336, −7.751464589534030, −7.040461599314517, −6.616145029387711, −6.038434496654913, −4.981295927504541, −4.569514719465389, −4.023291899893852, −3.136987462366937, −2.607258822281062, −1.683301994400179, −0.9460154769990073, 0.9460154769990073, 1.683301994400179, 2.607258822281062, 3.136987462366937, 4.023291899893852, 4.569514719465389, 4.981295927504541, 6.038434496654913, 6.616145029387711, 7.040461599314517, 7.751464589534030, 8.499807383266336, 8.944167721160688, 9.676490072862720, 10.12922237340635, 10.94098258623393, 11.56344410054712, 11.96273641910697, 12.55023323391579, 13.08599849481400, 13.72985673428629, 14.34402565138866, 14.59679074530264, 15.11476128614319, 15.45451195162296

Graph of the $Z$-function along the critical line